版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
認知的連接主義模型Chapter2
ConnectionistModelsofCognitionMichaelS.C.ThomasandJamesL.McClellandMichaelS.C.ThomasPosition:ReaderinCognitiveNeuropsychologyPostgraduateTutorCentreforBrainandCognitiveDevelopment,SchoolofPsychology,BirkbeckUniversityofLondon,Myprimaryinterestsareincognitiveandlanguagedevelopment,bothintermsofdevelopmentalprocessesinchildrenandinthefinalcognitivestructurestheyproduceintheadult.JamesL.McClellandProfessor,DepartmentofPsychology
Director,CenterforMind,BrainandComputation
StanfordUniversityJamesL.(Jay)McClelland(bornDecember1,1948)isaProfessorofPsychologyatStanfordUniversity.HeisbestknownforhisworkconcerningParallelDistributedProcessing,applyingconnectionistmodels(orneuralnetworks)toexplaincognitivephenomenasuchasspokenwordrecognitionandvisualwordrecognition.McClellandistoalargeextentresponsibleforthe"connectionistrevolution"ofthe1980s,whichsawalargeincreaseinscientificinterestforconnectionism..----wikipediaOverhiscareer,McClellandhascontributedtoboththeexperimentalandtheoreticalliteraturesinanumberofareas,mostnotablyintheapplicationofconnectionist/paralleldistributedprocessingmodelstoproblemsinperception,cognitivedevelopment,languagelearning,andtheneurobiologyofmemory.Hewasaco-founderwithDavidE.RumelhartoftheParallelDistributedProcessingresearchgroup,andtogetherwithRumelhartheledtheeffortleadingtothepublicationin1986ofthetwo-volumebook,ParallelDistributedProcessing,inwhichtheparalleldistributedprocessingframeworkwaslaidoutandappliedtoawiderangeoftopicsincognitivepsychologyandcognitiveneuroscience.McClellandandRumelhartjointlyreceivedthe1993HowardCrosbyWarrenMedalfromtheSocietyofExperimentalPsychologists,the1996DistinguishedScientificContributionAwardfromtheAmericanPsychologicalAssociation,the2001GrawemeyerPrizeinPsychology,andthe2002IEEENeuralNetworksPioneerAwardforthiswork.McClellandhasservedasSeniorEditorofCognitiveScience,asPresidentoftheCognitiveScienceSociety,andasamemberoftheNationalAdvisoryMentalHealthCouncil,andheiscurrentlypresident-electoftheFedertationoftheBehavioral,Psychological,andCognitiveSciences.HeisamemberoftheNationalAcademyofSciences,andhehasreceivedtheAPSWilliamJamesFellowAwardforlifetimecontributionstothebasicscienceofpsychology.一句話總結:這家伙很牛BackgroundSomeIllustrativeModelsConnectionistInfluencesonCognitiveTheoryConclusionsOutlineBackgroundWhatisConnectionist?AlsoknownasArtificialneuralnetwork(ANN)orParalleldistributedprocessing(PDP)modelshasbeenappliedtoadiverserangeofcognitiveabilities,includingmodelsofmemory,attention,perception,action,language,conceptformation,andreasoningAlthoughmanyofthesemodelsseektocaptureadultfunction,connectionismplacesanemphasisonlearninginternalrepresentations.Histrationcontext萌芽期(20世紀40年代)
1943年,心理學家McCulloch和數學家Pitts建立起了著名的閾值加權和模型,簡稱為M-P模型。發(fā)表于數學生物物理學會刊《BulletinofMethematicalBiophysics》
1949年,心理學家D.O.Hebb提出神經元之間突觸聯系是可變的假說——Hebb學習律。
第一高潮期(1950~1968)
以MarvinMinsky,FrankRosenblatt,BernardWidrow等為代表人物,代表作是單級感知器(Perceptron)。
可用電子線路模擬。
人們樂觀地認為幾乎已經找到了智能的關鍵。許多部門都開始大批地投入此項研究,希望盡快占領制高點。反思期(1969~1982)
M.L.Minsky和S.Papert,《Perceptron》,MITPress,1969年
異或”運算不可表示
第二高潮期(1983~1990)
1982年,J.Hopfield提出Hopfield網絡用Lyapunov函數作為網絡性能判定的能量函數,建立ANN穩(wěn)定性的判別依據闡明了ANN與動力學的關系用非線性動力學的方法來研究ANN的特性指出信息被存放在網絡中神經元的聯接上
1984年,
J.Hopfield設計研制了后來被人們稱為Hopfield網-Tank電路。較好地解決了著名的TSP問題,找到了最佳解的近似解,引起了較大的轟動。
1985年,Hinton、Sejnowsky、Rumelhart等人所在的并行分布處理(PDP)小組的研究者在Hopfield網絡中引入了隨機機制,提出所謂的Boltzmann機。
1986年,并行分布處理小組的Rumelhart等研究者重新獨立地提出多層網絡的學習算法——BP算法,較好地解決了多層網絡的學習問題。(Paker1982和Werbos1974年)
徐雷提出的Ying-Yang機理論模型
甘利俊一(S.Amari)開創(chuàng)和發(fā)展的基于統(tǒng)計流形的方法應用于人工神經網絡的研究,
國內首屆神經網絡大會是1990年12月在北京舉行的。注:以上3頁引自中科院計算所史忠植老師課件:
《神經信息學——平行分布式理論框架》SeeMore…KeypropertiesofConnectionistModels1)
asetofprocessingunits---ui2)
astateofactivationatagiventime---a(t)3)
apatternofconnectivity---wij4)
aruleforpropagatingactivationstatesthroughtthenetwork5)
anactivationruletospecifyhowthenetinputstoagivenunitarecombinedtoproduceitsnewactivationstate---F6)
thealgorithmformodifyingthepatternsofconnectivityasafunctionofexperience
Hebbianlearningruledeltarulebackpropagation7)
arepresentationoftheenvironmentwithrespecttothesysterm.NeuralplausibilityWhetherthese“brain-like”systemsareindeedneurallyplausible?Iftheyarenot,shouldtheyinsteadbeviewedasaclassofstatisticalfunctionapproximators?Andifso,shouldn’ttheabilityofthesemodelstosimulatepatternsofhumanbehaviorbeassessedinthecontextofthelargenumberoffreeparameterstheycontain(e.g.,intheweightmatrix;Green,1998)?Theadvantageofconnectionism,accordingtoitsproponents,isthatitprovidesbettertheoriesofcognition.Manyconnectionistmodelseitherincludepropertiesthatarenotneurallyplausibleoromitotherpropertiesthatneuralsystemsappeartohave.Endeavoringtoshowhowfeaturesofconnectionistsystemsmightinfactberealizedintheneuralmachineryofthebrain.Stressingthecognitivenatureofcurrentconnectionistmodels.Whyconnectionistmodelsshouldbereckonedanymoreplausibleasputativedescriptionsofcognitiveprocessesjustbecausetheyare“brain-like”?ConnectionvssymbolicTwosortsofcriticismTherelationshipbetweenConnectionistModels&BayesianInferenceTherearestronglinksbetweenthecalculationscarriedoutinconnectionistmodelsandkeyelementsofBayesiancalculations(seechapter3)Firstofall,thatunitscanbeviewedasplayingtheroleofprobabilistichypotheses.Second,instochasticneuralnetworks,anetwork’sstateoverallofitsunitscanrepresentaconstellationofhypothesesaboutaninput,and(iftheweightsandthebiasesaresetcorrectly)thattheprobabilityoffindingthenetworkinaparticularstateismonotonicallyrelatedtotheprobabilitythatthestateisthecorrectinterpretationoftheinput.連接主義模型與概率統(tǒng)計模型(如貝葉斯模型)連接主義模型:向底層發(fā)展——〉生物神經網絡的構建。BlueBrain.模擬真實的神經結構,可用于模擬藥物測試等。向高層發(fā)展——〉建模,為認知心理學中的某些現象提供解釋。模型的結構不一定符合生物的神經網絡結構,可以看作是基于統(tǒng)計數據提出的數學模型(概率統(tǒng)計模型)。概率統(tǒng)計模型:本人了解的不多。不過根據miner的說法,差不多隨便什么和認知相關的事都能用貝葉斯模型來解釋,很強大。這部分將由jake在下下次活動時詳細介紹。SomeIllustrativeModelsAnInteractiveActivationModelofContextEffectsinLetterPerception(McClelland&Rumelhart,1981,Rumelhart&McClelland,1982)用于解釋“詞優(yōu)越效應”TheprotocolHe(thescientist)presentedtargetlettersinwords,inunpronounceablenonwords,orontheirown.Thestimuliwerethenfollowedbyapatternmask,afterwhichparticipantswerepresentedwithaforcedchoicebetweentwolettersinagivenposition.Importantly,bothalternativeswereequallyplausible.Thus,theparticipantmightbepresentedwithWOODandaskedwhetherthethirdletterwasOorR.Asexpected,forced-choiceperformancewasmoreaccurateforlettersinwordsthanforlettersinnonwordsorletterspresentedontheirown.識別在詞中的字母時,自上而下(詞—〉字母)與自下而上(形狀—〉字母)相結合,最容易識別threemainassumptionsoftheIAmodel:Perceptualprocessingtakesplaceinasysteminwhichthereareseverallevelsofprocessing,eachofwhichformsarepresentationoftheinputatadifferentlevelofabstraction;visualperceptioninvolvesparallelprocessing,bothofthefourlettersineachwordandofalllevelsofabstractionsimultaneously;(3)perceptionisaninteractiveprocessinwhichconceptuallydrivenanddatadrivenprocessingprovidemultiple,simultaneouslyactingconstraintsthatcombinetodeterminewhatisperceived.Butnotadaptive–connectivitywassetbyhand.(2)theideaofbottom-upexcitationfollowedbycompetitionamongmutuallyexclusivepossibilitiesisastrategyfamiliarinBayesianapproachestocognition.OnLearningthePastTenseofEnglishVerbs
(Rumelhart&McClelland,1986)用于解釋兒童語言學習的U形現象DuringtheacquisitionoftheEnglishpasttense,childrenshowacharacteristicU-shapeddevelopmentalprofileatdifferenttimesforindividualirregularverbs.Initially,theyusethecorrectpasttenseofasmallnumberofhigh-frequencyregularandirregularverbs.Later,theysometimesproduce“overregularized”pasttenseformsforasmallfractionoftheirirregularverbs(e.g.,thinked;Marcusetal.,1992),alongwithother,lessfrequenterrors(Xu&Pinker,1995).Theyarealsoabletoextendthepasttense“rule”tonovelverbs(e.g.,wugwugged).Finally,inolderchildren,performanceapproachesceilingonbothregularandirregularverbs(Berko,1958;Ervin,1964;Kuczaj,1977)能通過學習自發(fā)“掌握”英語單詞過去時態(tài)的變化規(guī)則FindingStructureinTime(Elman,1990)英語語法學習:動詞和主語數的一致Recurrent網絡(前兩個是feedforward網絡),前一時刻的輸入在下一時刻仍有影響。Figure2.5.Trajectoryofinternalactivationstatesasthesimplerecurrentnetwork(SRN)processessentences(Elman,1993).RelatedModels···Cascade-CorrelationandIncrementalNeuralNetworkAlgorithmsMixture-of-Experts-ModelsHybridModelsBayesianGraphicalModelsConnectionistInfluencesonCognitiveTheoryKnowledgevsProcessingKnowledgeencode:active–recent
–howthingsarenowlatent–accumulated–howthingswillbeIfinformationdoesneedtobemovedaroundthesystem,thiswillrequirespecialstructuresandspecialprocesses.(seechapter7&8)Informationwillbeprocessedinthesamesubstratewhereitisstored.–controlsystem
hasnocontent–placeholders
efficiencyLastly,theconnectionistperspectiveonmemoryaltershowweconceiveofdomaingenerality
inprocessingsystems.Knowledgeishardtomoveaboutinconnectionistnetworksbecauseitisencodedintheweights.Cascade-CorrelationandIncrementalNeuralNetworkAlgorithmsCognitiveDevelopmentTheStudyofAcquiredDisordersinCognitiveNeuropsychologythecognitivesystemcomprisesasetofindependentlyfunctioningcomponents.Patternsofselectivecognitiveimpairmentafteracquiredbraindamagecouldthenbeusedtoconstructmodelsofnormalcognitivefunction.TheOriginsofIndividualVariability&DevelopmentalDisordersInadditiontotheirroleinstudyingacquireddisorders,thefactthatmanyconnectionistmodelslearntheircognitiveabilitiesmakesthemanidealframeworkwithinwhichtostudydevelopmentaldisorders,suchasautism,dyslexia,andspecificlanguageimpairmentBespokenetworks–>modelsfittogetherinthelargercognitivesystemComplexityvsSimplification&UnderstandingConnectionismwillbeaffectedbytheincreasingappealtoBayesianprobabilitytheory
inhumanreasoning.ConnectionismwillcontinuetohaveacloserelationtoneuroscienceBehavioralgenetics-buildlinksbetweenbehavior(wherevariabilityismeasured)andthesubstrateonwhichgeneticeffectsact.FutureDirectionsConclusions講完了~~謝謝大家!Feedforwardand
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人事考試中心培訓考試及答案
- 2025年山東棗莊事業(yè)單位考試題及答案
- 2025年江蘇事業(yè)編4月1號考試及答案
- 2025年博士計量和經濟學筆試及答案
- 2025年移動政企項目交付經理崗位筆試及答案
- 2025年贛州市事業(yè)單位報名考試及答案
- 2025年美術特崗筆試考試知識點及答案
- 2025年行政崗位筆試簡答題題庫及答案
- 2025年河南大專老師招聘筆試題及答案
- 2025年南京高校思政教師筆試題及答案
- 2026中國電信四川公用信息產業(yè)有限責任公司社會成熟人才招聘備考題庫帶答案詳解
- 2026云南大理州事業(yè)單位招聘48人參考題庫必考題
- 《公共科目》軍隊文職考試新考綱題庫詳解(2026年)
- 2025至2030中國啤酒市場行業(yè)調研及市場前景預測評估報告
- 報警受理工作制度規(guī)范
- 嘉賓邀請合同書
- 多源信息融合驅動的配電網狀態(tài)估計:技術革新與實踐應用
- 華電集團企業(yè)介紹
- 2025年安徽省從村(社區(qū))干部中錄用鄉(xiāng)鎮(zhèn)(街道)機關公務員考試測試題及答案
- 2025年AI時代的技能伙伴報告:智能體、機器人與我們(英文版)
- 中國舞蹈知識常見考點測試卷
評論
0/150
提交評論