五年級上冊數(shù)學(xué)幾何模型深度教學(xué):“等高模型”的探究與應(yīng)用_第1頁
五年級上冊數(shù)學(xué)幾何模型深度教學(xué):“等高模型”的探究與應(yīng)用_第2頁
五年級上冊數(shù)學(xué)幾何模型深度教學(xué):“等高模型”的探究與應(yīng)用_第3頁
五年級上冊數(shù)學(xué)幾何模型深度教學(xué):“等高模型”的探究與應(yīng)用_第4頁
五年級上冊數(shù)學(xué)幾何模型深度教學(xué):“等高模型”的探究與應(yīng)用_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

五年級上冊數(shù)學(xué)幾何模型深度教學(xué):“等高模型”的探究與應(yīng)用一、教學(xué)內(nèi)容分析??本課教學(xué)內(nèi)容隸屬于人教版小學(xué)數(shù)學(xué)五年級上冊“多邊形的面積”單元,是學(xué)生在掌握了平行四邊形、三角形、梯形的面積計算公式后,對幾何圖形內(nèi)在關(guān)系進(jìn)行深度結(jié)構(gòu)化認(rèn)識的關(guān)鍵節(jié)點。從《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》視角審視,本課知識技能圖譜的核心在于理解“等高”這一核心幾何屬性,并能在不同圖形組合(如共頂點、平行線間)中識別與運用“等底等高則面積相等”的原理,這不僅是面積計算技能的升華,更是連接單一圖形公式與復(fù)雜組合圖形面積的思維橋梁。其過程方法路徑緊密圍繞“幾何直觀”與“推理意識”兩大核心素養(yǎng)展開,通過觀察、操作、猜想、驗證等一系列數(shù)學(xué)活動,引導(dǎo)學(xué)生經(jīng)歷從具體感知到抽象概括的數(shù)學(xué)建模過程,將“等高模型”內(nèi)化為一種可遷移的解題策略與思維工具。素養(yǎng)價值滲透方面,本課旨在培養(yǎng)學(xué)生用聯(lián)系的、結(jié)構(gòu)的眼光看待幾何圖形,超越機械記憶公式,體會數(shù)學(xué)的簡潔與統(tǒng)一之美,并在探究與合作中發(fā)展嚴(yán)謹(jǐn)求實的科學(xué)態(tài)度。??基于“以學(xué)定教”原則進(jìn)行學(xué)情診斷:學(xué)生已具備平行四邊形、三角形面積計算的扎實技能,但對公式背后的“底”“高”對應(yīng)關(guān)系及其幾何意義理解可能仍停留在應(yīng)用層面。潛在的認(rèn)知障礙在于,面對變式或復(fù)合圖形時,難以自主識別隱蔽的“等高”關(guān)系,思維易被圖形形狀束縛。部分學(xué)生空間觀念較強,能快速發(fā)現(xiàn)規(guī)律,而另一部分學(xué)生則需要更具體的操作支撐。因此,教學(xué)過程中的形成性評估將至關(guān)重要,例如通過課始的“前測”任務(wù)單診斷起點,在新授環(huán)節(jié)通過巡視觀察學(xué)生拼圖、標(biāo)注高的活動,以及聆聽小組討論中的觀點交鋒,動態(tài)把握不同層次學(xué)生的理解進(jìn)程。針對此,教學(xué)調(diào)適應(yīng)提供差異化支持:為需要具象支撐的學(xué)生提供可操作的學(xué)具(如可活動高的磁性三角形);為思維較快的學(xué)生設(shè)計“你能發(fā)現(xiàn)幾種不同的等高關(guān)系?”等挑戰(zhàn)性問題,引導(dǎo)其進(jìn)行思維的發(fā)散與概括。二、教學(xué)目標(biāo)??知識目標(biāo):學(xué)生能準(zhǔn)確闡述“等高模型”(即在同(等)底等高或等底等高的條件下,圖形面積相等)的核心原理,并能夠用規(guī)范的數(shù)學(xué)語言(如“因為這兩個三角形的高都是從平行線間距離得來,所以相等”)解釋簡單及變式圖形中的面積關(guān)系,構(gòu)建起以“高”為紐帶聯(lián)系不同圖形面積的知識結(jié)構(gòu)。??能力目標(biāo):學(xué)生能夠在復(fù)雜的組合圖形或?qū)嶋H問題情境中,主動識別并構(gòu)造“等高”關(guān)系,利用該模型將未知面積轉(zhuǎn)化為已知面積進(jìn)行求解,發(fā)展幾何直觀與空間推理能力。例如,能夠獨立完成從復(fù)雜圖形中分解出等高三角形對,并清晰表述其面積相等的推理過程。??情感態(tài)度與價值觀目標(biāo):在小組合作探究“等高”秘密的過程中,學(xué)生能樂于分享自己的發(fā)現(xiàn),認(rèn)真傾聽同伴的不同思路,體驗通過團隊協(xié)作發(fā)現(xiàn)數(shù)學(xué)規(guī)律的成就感,初步形成敢于質(zhì)疑、嚴(yán)謹(jǐn)驗證的科學(xué)探究態(tài)度。??科學(xué)(學(xué)科)思維目標(biāo):重點發(fā)展學(xué)生的模型思想與轉(zhuǎn)化思想。通過系列探究任務(wù),引導(dǎo)學(xué)生經(jīng)歷“觀察特例—發(fā)現(xiàn)規(guī)律—概括模型—應(yīng)用解釋”的完整建模過程,學(xué)會運用“等高模型”這一思維工具將復(fù)雜問題化歸為基本問題,提升數(shù)學(xué)思維的策略性與概括性。??評價與元認(rèn)知目標(biāo):引導(dǎo)學(xué)生學(xué)會使用“標(biāo)注關(guān)鍵元素(底和高)”、“語言描述推理依據(jù)”等策略來監(jiān)控自己的解題思考過程。在課堂小結(jié)環(huán)節(jié),能通過對比不同解法,反思“等高模型”在簡化問題上的優(yōu)勢,初步形成對解題方法進(jìn)行評價與優(yōu)化的意識。三、教學(xué)重點與難點??教學(xué)重點:理解并掌握“等底(或同底)等高”的幾何圖形面積相等的原理,并能在標(biāo)準(zhǔn)圖形中初步應(yīng)用。其確立依據(jù)源于課標(biāo)對“圖形與幾何”領(lǐng)域“探索并掌握”的要求,以及該原理在解決多邊形面積問題中的樞紐地位。它是溝通多種面積公式的“大概念”,也是后續(xù)學(xué)習(xí)比例、相似乃至立體幾何的重要基礎(chǔ),在學(xué)業(yè)評價中常作為考查學(xué)生幾何直觀與邏輯推理能力的關(guān)鍵載體。??教學(xué)難點:在非標(biāo)準(zhǔn)擺放或復(fù)雜的組合圖形中,靈活識別或構(gòu)造出“等高”關(guān)系,并據(jù)此進(jìn)行面積轉(zhuǎn)化與計算。難點成因在于,學(xué)生需要克服圖形形狀的視覺干擾,抽象出“高”這一本質(zhì)屬性,并理解“平行線間距離處處相等”這一支撐“等高”判定的幾何公理。這需要一次從具體計算到抽象關(guān)系的認(rèn)知飛躍。預(yù)設(shè)突破方向是通過多層次、變式化的圖形辨析與構(gòu)造活動,借助動態(tài)幾何課件的演示,將隱藏的“平行線”顯性化,幫助學(xué)生建立“找平行線,定相等高”的思維路徑。四、教學(xué)準(zhǔn)備清單1.教師準(zhǔn)備??1.1媒體與教具:交互式電子白板課件(內(nèi)含動態(tài)演示“平行線間三角形頂點滑動,面積不變”的環(huán)節(jié));磁性教具(不同形狀但等高的三角形、平行四邊形);課堂前測與分層鞏固練習(xí)單。??1.2學(xué)習(xí)任務(wù)設(shè)計:“等高模型”探究學(xué)習(xí)任務(wù)單(包含操作記錄、猜想表格、驗證空間)。2.學(xué)生準(zhǔn)備??預(yù)習(xí)課本相關(guān)閱讀材料;準(zhǔn)備好直尺、鉛筆、彩筆;每人一份可剪拼的紙質(zhì)三角形學(xué)具。3.環(huán)境布置??課桌按4人異質(zhì)小組擺放,便于合作探究;黑板分區(qū)規(guī)劃,預(yù)留模型結(jié)構(gòu)圖、核心原理及學(xué)生作品展示區(qū)。五、教學(xué)過程第一、導(dǎo)入環(huán)節(jié)1.情境創(chuàng)設(shè)與問題驅(qū)動:“同學(xué)們,想象一下,社區(qū)有兩塊準(zhǔn)備用來建花壇的三角形草地,一塊又矮又胖,一塊又高又瘦。物業(yè)師傅說:‘別看它們形狀差這么多,需要的草皮面積可是一模一樣的!’你們相信嗎?老師這里就有這樣兩個看起來差別很大的三角形,我們來實際比一比?!保ɡ谜n件或教具出示等底等高的異形三角形)。2.提出核心問題:“到底是什么決定了圖形的面積?僅僅是它的形狀嗎?形狀迥異,面積卻可能相等,這背后的‘隱形指揮官’會是誰呢?”由此引出對“底”和“高”關(guān)系的深度思考。3.明晰探究路徑:“今天,我們就化身幾何偵探,一起來揪出這個‘隱形指揮官’——探索圖形中一種奇妙的關(guān)系:‘等高模型’。我們將通過動手操作、火眼金睛找規(guī)律、再到靈活應(yīng)用,揭開這個秘密?!钡诙⑿率诃h(huán)節(jié)任務(wù)一:動手操作,初感“等高”教師活動:首先,分發(fā)等底等高的三角形紙片,提出明確操作指令:“請大家將手中的三角形,嘗試通過剪拼,看看能轉(zhuǎn)化成哪些我們已經(jīng)學(xué)過的圖形?注意,在操作過程中,重點觀察和思考:在轉(zhuǎn)化前后,什么變了?什么沒變?”巡視指導(dǎo),關(guān)注學(xué)生是否關(guān)注到“高”的保持。隨后,請不同拼法(如拼成平行四邊形、長方形)的學(xué)生上臺展示。學(xué)生活動:動手剪拼三角形,嘗試將其轉(zhuǎn)化為平行四邊形或長方形。在小組內(nèi)交流自己的發(fā)現(xiàn),準(zhǔn)備匯報“形狀變了,但‘高’和‘底’所決定的面積大小沒變”。即時評價標(biāo)準(zhǔn):①操作是否規(guī)范,能否成功實現(xiàn)圖形轉(zhuǎn)化。②匯報時能否清晰指出“高”在轉(zhuǎn)化過程中的“不變性”。③傾聽時能否對他人的拼法提出補充或質(zhì)疑。形成知識、思維、方法清單:★圖形轉(zhuǎn)化中的“變與不變”:在等底等高的三角形與平行四邊形(或長方形)相互轉(zhuǎn)化過程中,圖形的形狀(外觀)發(fā)生變化,但其對應(yīng)的底和高的長度不變,因此面積不變。這是“等積變形”的直觀體現(xiàn)?!椒ㄌ崾荆簞邮植僮魇翘剿鲙缀卧淼睦鳎^察“不變量”是發(fā)現(xiàn)規(guī)律的關(guān)鍵。任務(wù)二:探究“平行線家族”中的等高秘密教師活動:在白板上畫一組平行線,在平行線間任意畫幾個頂點在平行線上、底邊在另一條平行線上的三角形。“大家看,這像不像一條馬路的兩條邊?現(xiàn)在,三角形的頂點在這條‘馬路’上可以自由‘散步’。猜一猜,這些三角形的面積有什么關(guān)系?為什么?”引導(dǎo)學(xué)生將注意力從單個圖形轉(zhuǎn)移到平行線的背景上。隨后,請學(xué)生自己在本子上畫一組平行線,并嘗試畫出幾個同底的三角形。學(xué)生活動:觀察教師圖示,提出猜想:這些三角形的面積可能都相等。通過自己畫圖,測量或計算進(jìn)行初步驗證。小組討論理由:“因為它們的高都是平行線之間的距離,是相等的;底又是同一條線段。”即時評價標(biāo)準(zhǔn):①猜想是否有幾何背景(平行線)作為依據(jù)。②畫圖是否準(zhǔn)確規(guī)范(平行線、頂點在線上的三角形)。③解釋時能否準(zhǔn)確使用“平行線間距離處處相等”這一理由。形成知識、思維、方法清單:★“等高模型”核心原理一(同底等高):夾在兩條平行線之間的一組三角形,如果它們擁有共同的底邊(同底),那么無論頂點在另一條平行線上如何移動,這些三角形的高都相等(因為平行線間距離處處相等),因此它們的面積也必然相等?!锖诵膸缀喂碇危涸撃P偷母谟凇捌叫芯€間距離處處相等”這一幾何性質(zhì)?!按蠹矣涀。叫芯€就像一條寬度固定的馬路,無論三角形‘住’在馬路哪一段,它的‘身高’(高)都被馬路寬度限定了!”任務(wù)三:從“同底等高”到“等底等高”的推廣教師活動:變換圖形,出示底邊長度相等但不完全重合、但仍在平行線之間的兩個三角形?!皠偛盼覀兪恰住F(xiàn)在這兩個三角形是‘等底’,它們還藏在這兩條平行線之間。它們的面積還相等嗎?哪位偵探能說出令人信服的理由?”鼓勵學(xué)生用語言描述或上臺標(biāo)注。隨后,動態(tài)演示兩個等底三角形在平行線間“滑動”,使其底邊重合,幫助學(xué)生直觀理解其等價關(guān)系。學(xué)生活動:觀察新圖形,嘗試將新情境與上一任務(wù)建立聯(lián)系。通過思考與討論,得出“等底”可以通“平行線間距離相等”這一橋梁,從而面積相等。嘗試完整表述:“因為它們的底相等,高都是平行線之間的距離也相等,所以面積相等。”即時評價標(biāo)準(zhǔn):①能否主動將新問題與已知模型(同底等高)聯(lián)系起來。②表述是否完整、邏輯清晰,同時提及“等底”和“等高”兩個條件。形成知識、思維、方法清單:★“等高模型”核心原理二(等底等高):如果兩個或多個圖形(三角形、平行四邊形等)的底邊長度相等,并且它們的高都等于同一組平行線之間的距離(即高相等),那么它們的面積也相等。▲思維升華:從“同底”到“等底”,體現(xiàn)了數(shù)學(xué)概括與推廣的思維過程。模型的應(yīng)用范圍得以拓展。“看,我們的模型升級了!不再要求底邊完全重合,只要長度相等,并且‘身高’一樣,面積就是雙胞胎!”任務(wù)四:模型應(yīng)用——火眼金睛辨關(guān)系教師活動:出示一組辨析題,包括標(biāo)準(zhǔn)圖、變式圖(如將三角形旋轉(zhuǎn)、倒置)和組合圖形中的部分。“考驗大家眼力的時候到了!請在下列各組圖形中,快速判斷哪兩個或哪幾個圖形的面積是相等的?并用彩筆畫出你認(rèn)為起到關(guān)鍵作用的‘平行線’或標(biāo)出相等的高?!苯M織小組競賽,看哪組找得又準(zhǔn)又快,理由說得又清楚。學(xué)生活動:獨立觀察、分析與標(biāo)注,然后在組內(nèi)交流判斷結(jié)果和依據(jù)。可能圍繞某些有爭議的圖形進(jìn)行討論,通過補充畫輔助線(虛擬的平行線)來達(dá)成一致。即時評價標(biāo)準(zhǔn):①判斷的準(zhǔn)確性。②標(biāo)注關(guān)鍵元素(高、平行線)的清晰度與正確性。③小組討論的參與度與解決問題的協(xié)作性。形成知識、思維、方法清單:★模型識別關(guān)鍵策略:在復(fù)雜圖形中識別等高模型,關(guān)鍵在于①尋找隱藏的平行線(如長方形的對邊、梯形的平行底邊);②尋找相等的底或可等量代換的底;③尋找相等的高(常由平行線確定或直接給定)。▲易錯點警示:面積相等不代表形狀相同,切勿被視覺誤導(dǎo)。必須回歸到底和高的數(shù)據(jù)或幾何關(guān)系上進(jìn)行理性判斷。任務(wù)五:模型建構(gòu)與表達(dá)教師活動:引導(dǎo)學(xué)生回顧整個探究過程?!敖?jīng)過這一番偵探工作,我們發(fā)現(xiàn)的這個‘等高模型’,誰能用最簡潔的方式總結(jié)一下它的核心要點?”鼓勵學(xué)生用自己的語言總結(jié),并最終師生共同完善,形成結(jié)構(gòu)化板書(如:條件:等底(同底)+等高→結(jié)論:面積相等)。“這個模型就像一把萬能鑰匙,能幫我們打開許多面積問題的大門。接下來,我們就試試用它來解決實際問題。”學(xué)生活動:積極參與總結(jié),嘗試用“如果…那么…”的句式表達(dá)模型。跟隨教師一起完善筆記,在頭腦中形成清晰的模型圖式。即時評價標(biāo)準(zhǔn):①總結(jié)是否抓住了模型的本質(zhì)(兩個條件,一個結(jié)論)。②語言表達(dá)是否具有邏輯性和數(shù)學(xué)味。形成知識、思維、方法清單:★“等高模型”結(jié)構(gòu)化總結(jié):本課所探究的幾何模型可系統(tǒng)表述為:對于一組平面圖形(主要是三角形、平行四邊形),若滿足①底邊長度相等(或為同一邊),且②高相等(這一條件常由圖形位于“兩條平行線之間”來保證),則可必然推出③它們的面積相等。這一模型體現(xiàn)了數(shù)學(xué)的確定性之美。▲核心價值:它將分散的面積計算知識,通過“等高”這一線索串聯(lián)起來,形成了轉(zhuǎn)化與化歸的重要思想工具。第三、當(dāng)堂鞏固訓(xùn)練??設(shè)計分層鞏固練習(xí),所有學(xué)生完成練習(xí)單。??基礎(chǔ)層(直接應(yīng)用):給定明確標(biāo)注出底和高的幾組圖形,直接判斷應(yīng)用“等底等高面積相等”得出結(jié)論。例如,平行線間兩個明確標(biāo)出等底和共同高的三角形。??綜合層(情境識別):在稍復(fù)雜的組合圖形或?qū)嶋H問題中,需要學(xué)生先識別出等高關(guān)系。例如,已知平行四邊形中某個三角形的面積,求另一個與其等底等高的三角形的面積;或給出一個梯形,連接對角線后,判斷其中哪兩部分三角形面積相等。??挑戰(zhàn)層(構(gòu)造應(yīng)用):提供一道開放性或逆用模型的題目。例如,“在下面這個梯形中,你能畫出幾個與陰影三角形面積相等的三角形?說說你的理由。”考查學(xué)生能否主動構(gòu)造等底等高的三角形。??反饋機制:基礎(chǔ)層練習(xí)采用全班核對、快速反饋。綜合層練習(xí)選取典型作品進(jìn)行投影展示,由學(xué)生講解思路,教師側(cè)重點評其“識別等高關(guān)系”的過程。挑戰(zhàn)層答案不唯一,組織小組間分享不同畫法,重點討論其合理性,深化對模型本質(zhì)的理解。第四、課堂小結(jié)??引導(dǎo)學(xué)生進(jìn)行結(jié)構(gòu)化總結(jié)與元認(rèn)知反思?!巴瑢W(xué)們,這節(jié)課的偵探之旅即將結(jié)束,你的‘幾何偵探工具箱’里多了哪件最厲害的工具?”鼓勵學(xué)生用思維導(dǎo)圖或關(guān)鍵詞(平行線、等底、等高、面積相等、轉(zhuǎn)化)梳理本節(jié)課知識邏輯。然后回顧解決問題的過程:“我們是怎么得到這個工具的?(觀察操作猜想驗證概括應(yīng)用)”。??作業(yè)布置:1.基礎(chǔ)性作業(yè)(必做):完成課本上相關(guān)的基礎(chǔ)練習(xí)題,鞏固等高模型的直接應(yīng)用。2.拓展性作業(yè)(建議完成):尋找生活中的一個實例(如建筑設(shè)計圖、地板拼接圖案),嘗試用“等高模型”的眼光去分析其中可能存在的面積相等關(guān)系,并畫圖說明。3.探究性作業(yè)(選做):思考:“等高模型”對于平行四邊形、梯形是否也同樣適用?如果兩個平行四邊形等底等高,面積相等嗎?你能舉例或畫圖證明你的觀點嗎?六、作業(yè)設(shè)計??基礎(chǔ)性作業(yè):1.判斷:下圖中,哪些三角形的面積是相等的?(提供多組基于平行線的標(biāo)準(zhǔn)圖形)2.計算:如圖,在平行四邊形ABCD中,已知△ABC的面積為20平方厘米,且E、F為對邊上的點,滿足AE=CF,求△ADE的面積。(直接應(yīng)用模型)??拓展性作業(yè):社區(qū)有一塊梯形綠地(圖上標(biāo)注尺寸),現(xiàn)計劃沿一條平行于底邊的線將其劃分為面積相等的兩部分種植不同花卉。請你當(dāng)一回小小設(shè)計師,畫出這條分割線,并說明理由。(要求:先計算,再畫圖,并寫出簡要設(shè)計說明)??探究性/創(chuàng)造性作業(yè):研究題:“等底等高的三角形面積相等”這個結(jié)論我們已熟知。那么,“等面積等底的三角形,高一定相等嗎?”和“等面積等高的三角形,底一定相等嗎?”請通過畫圖、舉例或邏輯推理的方式進(jìn)行研究,并撰寫一份簡短的“數(shù)學(xué)小發(fā)現(xiàn)”報告。七、本節(jié)知識清單及拓展??★1.“等高模型”的定義:指一組平面圖形,在滿足“等底(或同底)”和“等高”兩個條件時,它們的面積必定相等的幾何規(guī)律。它是面積計算中的一種重要等量關(guān)系。??★2.模型的幾何基礎(chǔ):核心支撐是“平行線間距離處處相等”這一幾何公理。平行線為判斷“等高”提供了最可靠和常見的場景。??★3.模型的兩種典型情境:(1)同底等高:頂點在一條平行線上,底邊在另一條平行線上的一組三角形。(2)等底等高:底邊長度相等,且高(通常由平行線確定)相等的一組圖形(三角形、平行四邊形等)。??★4.識別模型的關(guān)鍵步驟:一找(平行線或相等的高),二看(底邊是否相等或為同一邊),三判斷(確定面積相等關(guān)系)。“口訣:平行線間找兄弟,等底等高面積同?!??▲5.易混淆點辨析:面積相等的兩個三角形,不一定等底等高(它們可能底和高都不相等,但乘積相等);但反過來,等底等高的兩個三角形,面積一定相等。??★6.核心思想——轉(zhuǎn)化與化歸:利用等高模型,可以將未知圖形的面積轉(zhuǎn)化為已知圖形的面積來計算,這是數(shù)學(xué)中化繁為簡、化未知為已知的經(jīng)典策略。??▲7.模型的應(yīng)用價值:不僅用于快速判斷和計算面積,更是解決復(fù)雜幾何問題(如比例模型、蝴蝶模型的基礎(chǔ))和培養(yǎng)幾何直觀能力的重要基石。??▲8.拓展思考——從二維到三維:在小學(xué)階段埋下伏筆,等底等高的平面圖形面積相等。將來在中學(xué)學(xué)習(xí)立體幾何時,我們會遇到類似的“等底等高”的柱體、錐體,它們的體積之間也存在確定的關(guān)系。八、教學(xué)反思??(一)目標(biāo)達(dá)成度分析:本設(shè)計通過“操作感知探究建模應(yīng)用深化”的主線,基本實現(xiàn)了知識、能力與思維目標(biāo)。從假設(shè)的課堂實況看,“前測”能有效暴露學(xué)生僅關(guān)注形狀的誤區(qū),而“任務(wù)二、三”的探究活動成功地使大部分學(xué)生將注意力轉(zhuǎn)移到底和高的關(guān)系上。在鞏固環(huán)節(jié),約80%的學(xué)生能獨立完成基礎(chǔ)與綜合層練習(xí),表明對模型原理達(dá)到了理解與應(yīng)用水平;挑戰(zhàn)層活動則引發(fā)了優(yōu)秀學(xué)生的熱烈討論,出現(xiàn)了多種構(gòu)造等積三角形的巧妙方法,體現(xiàn)了思維的靈活性。情感目標(biāo)在小組合作與“幾何偵探”的角色代入中得以自然滲透,課堂氛圍積極。??(二)環(huán)節(jié)有效性評估:導(dǎo)入環(huán)節(jié)的認(rèn)知沖突創(chuàng)設(shè)成功激發(fā)了探究欲。新授環(huán)節(jié)的五個任務(wù)梯度合理,從具體到抽象,腳手架搭建有效。尤其是“任務(wù)二”到“任務(wù)三”的過渡,是思維爬坡的關(guān)鍵點。我預(yù)設(shè)了學(xué)生可能卡在“等底”如何與“同底”聯(lián)系起來,動態(tài)演示的“滑動”效果起到了關(guān)鍵的橋梁作用。鞏固訓(xùn)練的分層設(shè)計照顧了差異,但在時間把控上,挑戰(zhàn)層的分享環(huán)節(jié)可能需要根據(jù)課堂生成靈活調(diào)整時長,避免頭重腳輕。小結(jié)引導(dǎo)學(xué)生自主建構(gòu)模型圖式,比教師直接給出結(jié)論效果更優(yōu)。??(三)學(xué)生表現(xiàn)剖析:在小組活動中觀察發(fā)現(xiàn),空間觀念較強的學(xué)生(A類)能迅速發(fā)現(xiàn)平行線的作用,并主動擔(dān)任“小老師”角色向組員解釋;大部分學(xué)生(B類)在操作和具體圖示的幫助下能跟上節(jié)奏,但在脫離明確平行線背景的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論