2026屆北京市北京第四中學高一數(shù)學第一學期期末復(fù)習檢測模擬試題含解析_第1頁
2026屆北京市北京第四中學高一數(shù)學第一學期期末復(fù)習檢測模擬試題含解析_第2頁
2026屆北京市北京第四中學高一數(shù)學第一學期期末復(fù)習檢測模擬試題含解析_第3頁
2026屆北京市北京第四中學高一數(shù)學第一學期期末復(fù)習檢測模擬試題含解析_第4頁
2026屆北京市北京第四中學高一數(shù)學第一學期期末復(fù)習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆北京市北京第四中學高一數(shù)學第一學期期末復(fù)習檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知H是球的直徑AB上一點,AH:HB=1:2,AB⊥平面,H為垂足,截球所得截面的面積為,則球的表面積為A. B.C. D.2.關(guān)于不同的直線與不同的平面,有下列四個命題:①,,且,則②,,且,則③,,且,則④,,且,則其中正確命題的序號是A.①② B.②③C.①③ D.③④3.設(shè):,:,則是的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件4.要完成下列兩項調(diào)查:(1)某社區(qū)有100戶高收入家庭,210戶中等收入家庭,90戶低收入家庭,從中抽取100戶調(diào)查有關(guān)消費購買力的某項指標;(2)從某中學高一年級的10名體育特長生中抽取3人調(diào)查學習情況;應(yīng)采用的抽樣方法分別是()A.(1)用簡單隨機抽樣,(2)用分層隨機抽樣 B.(1)(2)都用簡單隨機抽樣C.(1)用分層隨機抽樣,(2)用簡單隨機抽樣 D.(1)(2)都用分層隨機抽樣5.下列函數(shù)既是定義域上的減函數(shù)又是奇函數(shù)的是A. B.C. D.6.函數(shù),設(shè),則有A. B.C. D.7.如圖,一個水平放置的平面圖形的直觀圖是邊長為2的菱形,且,則原平面圖形的周長為()A. B.C. D.88.已知函數(shù)則函數(shù)值域是()A. B.C. D.9.函數(shù)的零點所在區(qū)間為A. B.C. D.10.,,,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.體積為8的正方體的頂點都在同一球面上,則該球面的表面積為__________.12.已知函數(shù),則的值是()A. B. C. D.13.已知,,,則___________.14.函數(shù)y=的單調(diào)遞增區(qū)間是____.15.已知函數(shù)f(x)=x2,若存在t∈R,對任意x∈[1,m](m>1,m∈N),都有f(x+t)≤2x,則m的最大值為______16.函數(shù)的最大值是__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知是定義在上的奇函數(shù),且,若,時,有成立.(1)判斷在上的單調(diào)性,并證明;(2)解不等式;(3)若對所有的恒成立,求實數(shù)的取值范圍.18.函數(shù)中角的終邊經(jīng)過點,若時,的最小值為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間.19.已知定義在上的奇函數(shù).(1)求實數(shù)的值;(2)解關(guān)于的不等式20.如圖,某人計劃用籬笆圍成一個一邊靠墻(墻的長度沒有限制)的矩形生態(tài)種植園.設(shè)生態(tài)種植園的長為,寬為(1)若生態(tài)種植園面積為,則為何值時,可使所用籬笆總長最?。浚?)若使用的籬笆總長度為,求的最小值21.已知函數(shù),,圖象上相鄰兩個最低點的距離為(1)若函數(shù)有一個零點為,求的值;(2)若存在,使得(a)(b)(c)成立,求的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】設(shè)球的半徑為,根據(jù)題意知由與球心距離為的平面截球所得的截面圓的面積是,我們易求出截面圓的半徑為1,根據(jù)球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿足勾股定理,我們易求出該球的半徑,進而求出球的表面積【詳解】設(shè)球的半徑為,∵,∴平面與球心的距離為,∵截球所得截面的面積為,∴時,,故由得,∴,∴球的表面積,故選D【點睛】本題主要考查的知識點是球的表面積公式,若球的截面圓半徑為,球心距為,球半徑為,則球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿足勾股定理,屬于中檔題.2、C【解析】根據(jù)線線垂直,線線平行的判定,結(jié)合線面位置關(guān)系,即可容易求得判斷.【詳解】對于①,若,,且,顯然一定有,故正確;對于②,因為,,且,則的位置關(guān)系可能平行,也可能相交,也可能是異面直線,故錯;對于③,若,//且//,則一定有,故③正確;對于④,,,且,則與的位置關(guān)系不定,故④錯故正確的序號有:①③.故選C【點睛】本題考查直線和直線的位置關(guān)系,涉及線面垂直以及面面垂直,屬綜合基礎(chǔ)題.3、B【解析】解出不等式,根據(jù)集合的包含關(guān)系,可得到答案.【詳解】解:因為:,所以:或,因為:,所以是的充分不必要條件.故選:B【點睛】本題考查了充分不必要條件的判斷,兩個命題均是范圍形式,解決問題常見的方法是判斷出集合之間包含關(guān)系.4、C【解析】根據(jù)簡單隨機抽樣、分層抽樣的適用條件進行分析判斷.【詳解】因為有關(guān)消費購買力的某項指標受家庭收入的影響,而社區(qū)家庭收入差距明顯,所以①用分層抽樣;從10名體育特長生中抽取3人調(diào)查學習情況,個體之間差別不大,且總體和樣本容量較小,所以②用簡單隨機抽樣.故選:C5、C【解析】根據(jù)函數(shù)的單調(diào)性與奇偶性對選項中的函數(shù)進行判斷即可【詳解】對于A,f(x)=|x|,是定義域R上的偶函數(shù),∴不滿足條件;對于B,f(x),在定義域(﹣∞,0)∪(0,+∞)上是奇函數(shù),且在每一個區(qū)間上是減函數(shù),不能說函數(shù)在定義域上是減函數(shù),∴不滿足條件;對于C,f(x)=﹣x3,在定義域R上是奇函數(shù),且是減函數(shù),∴滿足題意;對于D,f(x)=x|x|,在定義域R上是奇函數(shù),且是增函數(shù),∴不滿足條件故答案為:C【點睛】本題主要考查函數(shù)的單調(diào)性和奇偶性,意在考查學生對這些知識的掌握水平和分析推理能力.6、D【解析】>1,<0,0<<1,∴b<c<1,又在x∈(-∞,1)上是減函數(shù),∴f(c)<f(b)<0,而f(a)>0,∴f(c)<f(b)<f(a).點睛:在比較冪和對數(shù)值的大小時,一般化為同底數(shù)的冪(利用指數(shù)函數(shù)性質(zhì))或同底數(shù)對數(shù)(利用對數(shù)函數(shù)性質(zhì)),有時也可能化為同指數(shù)的冪(利用冪函數(shù)性質(zhì))比較大小,在不能這樣轉(zhuǎn)化時,可借助于中間值比較,如0或1等.把它們與中間值比較后可得出它們的大小7、B【解析】利用斜二測畫法還原直觀圖即得.【詳解】由題可知,∴,還原直觀圖可得原平面圖形,如圖,則,∴,∴原平面圖形的周長為.故選:B.8、B【解析】結(jié)合分段函數(shù)的單調(diào)性來求得的值域.【詳解】當吋,單調(diào)遞增,值域為;當時,單調(diào)遞增,值域為,故函數(shù)值域為.故選:B9、C【解析】要判斷函數(shù)的零點位置,我們可以根據(jù)零點存在定理,依次判斷區(qū)間的兩個端點對應(yīng)的函數(shù)值,然后根據(jù)連續(xù)函數(shù)在區(qū)間上零點,則與異號進行判斷【詳解】,,故函數(shù)的零點必落在區(qū)間故選C【點睛】本題考查的知識點是函數(shù)的零點,解答的關(guān)鍵是零點存在定理:即連續(xù)函數(shù)在區(qū)間上與異號,則函數(shù)在區(qū)間上有零點10、B【解析】根據(jù)對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性即可得出,,的大小關(guān)系【詳解】,,,故選:二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】正方體體積8,可知其邊長為2,正方體的體對角線為=2,即為球的直徑,所以半徑為,所以球的表面積為=12π故答案為:12π點睛:設(shè)幾何體底面外接圓半徑為,常見的圖形有正三角形,直角三角形,矩形,它們的外心可用其幾何性質(zhì)求;而其它不規(guī)則圖形的外心,可利用正弦定理來求.若長方體長寬高分別為則其體對角線長為;長方體的外接球球心是其體對角線中點.找?guī)缀误w外接球球心的一般方法:過幾何體各個面的外心分別做這個面的垂線,交點即為球心.三棱錐三條側(cè)棱兩兩垂直,且棱長分別為,則其外接球半徑公式為:.12、B【解析】分段函數(shù)求值,根據(jù)自變量所在區(qū)間代相應(yīng)的對應(yīng)關(guān)系即可求解【詳解】函數(shù)那么可知,故選:B13、【解析】由已知條件結(jié)合所給角的范圍求出、,再將展開即可求解【詳解】因為,所以,又因為,所以,所以,因為,,所以,因為,所以,所以,故答案為:.【點睛】關(guān)鍵點點睛:本題解題的關(guān)鍵點是由已知角的三角函數(shù)值的符號確定角的范圍進而可求角的正弦或余弦,將所求的角用已知角表示即.14、【解析】設(shè)函數(shù),再利用復(fù)合函數(shù)的單調(diào)性原理求解.【詳解】解:由題得函數(shù)的定義域為.設(shè)函數(shù),因為函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,函數(shù)是單調(diào)遞減函數(shù),由復(fù)合函數(shù)的單調(diào)性得函數(shù)y=的單調(diào)遞增區(qū)間為.故答案為:15、5【解析】設(shè)g(x)=f(x+t)-2x=x2+(2t-2)x+t2≤0.從而得到g(1)≤0且g(m)≤0,求得t的范圍,討論t的最值,代入m的不等式求得m的范圍,結(jié)合條件可得m的最大值【詳解】函數(shù)f(x)=x2,那么f(x+t)=x2+2tx+t2,對任意實數(shù)x∈[l,m],都有f(x+t)≤2x成立,即有x2+(2t-2)x+t2≤0令g(x)=x2+(2t-2)x+t2,從而得到g(1)≤0,且g(m)≤0,由g(1)≤0可得,由g(m)≤0,即m2+(2t-2)m+t2≤0當時,;當時,綜上可得,由m為正整數(shù),可得m的最大值為5故答案為5【點睛】本題考查不等式恒成立問題解法,注意運用二次函數(shù)的性質(zhì),考查運算求解能力,是中檔題16、【解析】由題意得,令,則,且故,,所以當時,函數(shù)取得最大值,且,即函數(shù)的最大值為答案:點睛:(1)對于sinα+cosα,sinαcosα,sinα-cosα這三個式子,當其中一個式子的值知道時,其余二式的值可求,轉(zhuǎn)化的公式為(sinα±cosα)2=1±2sinαcosα(2)求形如y=asinxcosx+b(sinx±cosx)+c的函數(shù)的最值(或值域)時,可先設(shè)t=sinx±cosx,轉(zhuǎn)化為關(guān)于t的二次函數(shù)求最值(或值域)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)(3)或或【解析】(1)根據(jù)條件賦值得,根據(jù)奇函數(shù)性質(zhì)得,再根據(jù)單調(diào)性定義得減函數(shù),(2)利用單調(diào)性化簡得,結(jié)合定義區(qū)間得,解方程組得結(jié)果,(3)即,再根據(jù)單調(diào)性得,化簡得關(guān)于a恒成立的不等式,根據(jù)一次函數(shù)圖像得,解得實數(shù)的取值范圍.試題解析:證明:(1)在上是減函數(shù)任取且,則,為奇函數(shù)由題知,,即在上單調(diào)遞減在上單調(diào)遞減解得不等式的解集為(3),在上單調(diào)遞減在上,問題轉(zhuǎn)化為,即,對任意的恒成立令,即,對任意恒成立則由題知,解得或或點睛:解函數(shù)不等式:首先根據(jù)函數(shù)的性質(zhì)把不等式轉(zhuǎn)化為的形式,然后根據(jù)函數(shù)的單調(diào)性去掉“”,轉(zhuǎn)化為具體的不等式(組),此時要注意與的取值應(yīng)在外層函數(shù)的定義域內(nèi).18、(1)(2),【解析】(1)根據(jù)角的終邊經(jīng)過點求,再由題意得周期求即可;(2)根據(jù)正弦函數(shù)的單調(diào)性求單調(diào)區(qū)間即可.【小問1詳解】因為角的終邊經(jīng)過點,所以,若時,的最小值為可知,∴【小問2詳解】令,解得故單調(diào)遞增區(qū)間為:,19、(1)1;(2).【解析】(1)由奇函數(shù)的性質(zhì)有,可求出的值,注意驗證是否為奇函數(shù).(2)根據(jù)函數(shù)的奇偶性、單調(diào)性可得,再結(jié)合對數(shù)函數(shù)的性質(zhì)求解集.【小問1詳解】因為是定義在上的奇函數(shù),所以,解得,經(jīng)檢驗是奇函數(shù),即【小問2詳解】由,得,又是定義在上的奇函數(shù),所以,易知在上遞增,所以,則,解得,所以原不等式的解集為20、(1)為,為;(2).【解析】(1)根據(jù)題意,可得,籬笆總長為,利用基本不等式可求出的最小值,即可得出對應(yīng)的值;(2)由題可知,再利用整體乘“1”法和基本不等式,求得,進而得出的最小值.【小問1詳解】解:由已知可得,而籬笆總長為,又,則,當且僅當,即時等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論