北京西城14中2026屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第1頁
北京西城14中2026屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第2頁
北京西城14中2026屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第3頁
北京西城14中2026屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第4頁
北京西城14中2026屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京西城14中2026屆數(shù)學(xué)高二上期末質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某學(xué)校的校車在早上6:30,6:45,7:00到達某站點,小明在早上6:40至7:10之間到達站點,且到達的時刻是隨機的,則他等車時間不超過5分鐘的概率是()A. B.C. D.2.在四棱錐P-ABCD中,底面ABCD,,,點E為PA的中點,,,,則點B到平面PCD的距離為()A. B.C. D.3.已知數(shù)列的前n項和為,,,則()A. B.C.1025 D.20494.已知圓M與直線與都相切,且圓心在上,則圓M的方程為()A. B.C. D.5.若直線:與直線:平行,則a的值是()A.1 B.C.或6 D.或76.已知點在拋物線:上,點為拋物線的焦點,,點P到y(tǒng)軸的距離為4,則拋物線C的方程為()A. B.C. D.7.下列數(shù)列中成等差數(shù)列的是()A. B.C. D.8.設(shè)等比數(shù)列的前項和為,且,則()A. B.C. D.9.為了了解1200名學(xué)生對學(xué)校某項教改實驗的意見,打算從中抽取一個容量為40的樣本,采用系統(tǒng)抽樣方法,則分段的間隔為()A.40 B.30C.20 D.1210.下列命題中的假命題是()A.若log2x<2,則0<x<4B.若與共線,則與的夾角為0°C.已知各項都不為零的數(shù)列{an}滿足an+1-2an=0,則該數(shù)列為等比數(shù)列D.點(π,0)是函數(shù)y=sinx圖象上一點11.橢圓離心率是()A. B.C. D.12.設(shè)集合,則AB=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率為__________14.已知等比數(shù)列滿足,則_________15.函數(shù)的圖象在點P()處的切線方程是,則_____16.設(shè),分別是橢圓C:左、右焦點,點M為橢圓C上一點且在第一象限,若為等腰三角形,則M的坐標(biāo)為___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線,圓.(1)求證:直線l恒過定點;(2)若直線l的傾斜角為,求直線l被圓C截得的弦長.18.(12分)已知橢圓C:的離心率為,短軸的一個端點到右焦點的距離為2.(1)橢圓C的方程;(2)設(shè)直線l:交橢圓C于A,B兩點,且,求m的值.19.(12分)如圖所示,在空間四邊形中,,分別為,的中點,,分別在,上,且.求證:(1)、、、四點共面;(2)與的交點在直線上20.(12分)如圖,在四棱錐中,平面ABCD,,,且,,.(1)求證:平面PAC;(2)已知點M是線段PD上的一點,且,當(dāng)三棱錐的體積為1時,求實數(shù)的值.21.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA+(2c+a)cosB=0(1)求角B的大?。唬?)若b=4,△ABC的面積為,求a+c的值22.(10分)給定函數(shù).(1)判斷函數(shù)f(x)的單調(diào)性,并求出f(x)的極值;(2)畫出函數(shù)f(x)的大致圖象,無須說明理由(要求:坐標(biāo)系中要標(biāo)出關(guān)鍵點);(3)求出方程的解的個數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出小明等車時間不超過5分鐘能乘上車的時長,即可計算出概率.【詳解】6:40至7:10共30分鐘,小明同學(xué)等車時間不超過5分鐘能乘上車只能是6:40至6:45和6:55至7:00到站,共10分鐘,所以所求概率為.故選:B2、D【解析】為中點,連接,易得為平行四邊形,進而可知B到平面PCD的距離即為到平面PCD的距離,再由線面垂直的性質(zhì)確定線線垂直,在直角三角形中應(yīng)用勾股定理求相關(guān)線段長,即可得△為直角三角形,最后應(yīng)用等體積法求點面距即可.【詳解】若為中點,連接,又E為PA的中點,所以,,又,,則且,所以為平行四邊形,即,又面,面,所以面,故B到平面PCD的距離,即為到平面PCD的距離,由底面ABCD,面ABCD,即,,,又,即,,則面,面,即,而,,,,易知:,在△中;在△中;在△中;綜上,,故,又,則.所以B到平面PCD的距離為.故選:D3、B【解析】根據(jù)題意得,進而根據(jù)得數(shù)列是等比數(shù)列,公比為,首項為,再根據(jù)等比數(shù)列求和公式求解即可.【詳解】解:因為數(shù)列的前n項和為滿足,所以當(dāng)時,,解得,當(dāng)時,,即所以,解得或,因為,所以.所以,,所以當(dāng)時,,所以,即所以數(shù)列是等比數(shù)列,公比為,首項為,所以故選:B4、A【解析】由題可設(shè),結(jié)合條件可得,即求.【詳解】∵圓心在上,∴可設(shè)圓心,又圓M與直線與都相切,∴,解得,∴,即圓的半徑為1,圓M的方程為.故選:A.5、D【解析】根據(jù)直線平行的充要條件即可求出【詳解】依題意可知,顯然,所以由可得,,解得或7故選:D6、D【解析】由拋物線定義可得,注意開口方向.詳解】設(shè)∵點P到y(tǒng)軸的距離是4∴∵,∴.得:.故選:D.7、C【解析】利用等差數(shù)列定義,逐一驗證各個選項即可判斷作答.【詳解】對于A,,A不是等差數(shù)列;對于B,,B不是等差數(shù)列;對于C,,C是等差數(shù)列;對于D,,D不是等差數(shù)列.故選:C8、C【解析】根據(jù)給定條件求出等比數(shù)列公比q的關(guān)系,再利用前n項和公式計算得解.【詳解】設(shè)等比數(shù)列的的公比為q,由得:,解得,所以.故選:C9、B【解析】根據(jù)系統(tǒng)抽樣的概念,以及抽樣距的求法,可得結(jié)果.【詳解】由總數(shù)為1200,樣本容量為40,所以抽樣距為:故選:B【點睛】本題考查系統(tǒng)抽樣的概念,屬基礎(chǔ)題.10、B【解析】四個選項中需要分別利用對數(shù)函數(shù)的性質(zhì),向量共線的定義,等比數(shù)列的定義以及三角函數(shù)圖像判斷,根據(jù)題意結(jié)合知識點,即可得出結(jié)果.【詳解】選項A,由于此對數(shù)函數(shù)單調(diào)遞增,并且結(jié)合對數(shù)函數(shù)定義域,即可求得結(jié)果,所以是真命題;選項B,向量共線,夾角可能是或,所以是假命題;選項C,將式子變形可得,符合等比數(shù)列定義,所以是真命題;選項D,將點代入解析式,等號成立,所以是真命題;故選B.【點睛】本題考查命題真假的判定,根據(jù)題意結(jié)合各知識點即可判斷真假,需要熟練掌握對數(shù)函數(shù)、等比數(shù)列、向量夾角以及三角函數(shù)的基本性質(zhì).11、C【解析】將方程轉(zhuǎn)化為橢圓的標(biāo)準方程,求得a,c,再由離心率公式求得答案.【詳解】解:由得,所以,則,所以橢圓的離心率,故選:C.12、B【解析】按交集定義求解即可.【詳解】AB={2,3}故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵雙曲線的方程為∴,∴∴故答案為14、84【解析】設(shè)公比為q,求出,再由通項公式代入可得結(jié)論【詳解】設(shè)公比為q,則,解得所以故答案為:8415、【解析】根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合切線方程,即可求解.【詳解】根據(jù)導(dǎo)數(shù)的幾何意義可知,,且,所以.故答案為:16、【解析】先計算出,所以,利用余弦定理求出,即可求出,即得到M的橫坐標(biāo)為,代入橢圓C:求出.【詳解】橢圓C:,所以.因為M在橢圓上,.因為M在第一象限,故.為等腰三角形,則,所以,由余弦定理可得.過M作MA⊥x軸于A,則所以,即M的橫坐標(biāo)為.因為M為橢圓C:上一點且在第一象限,所以,解得:所以M的坐標(biāo)為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)直線方程變形后令的系數(shù)等于0消去參數(shù)即可求得定點坐標(biāo).(2)先求出圓心C到直線l距離,然后用勾股定理即可求得弦長.【小問1詳解】,聯(lián)立得:即直線l過定點(.【小問2詳解】由題意直線l的斜率,即,∴,圓,圓心,半徑,圓心C到直線l的距離,所以直線l被圓C所截得的弦長為.18、(1);(2).【解析】(1)通過短軸的一個端點到右焦點的距離可知,進而利用離心率的值計算即得結(jié)論;(2)設(shè),聯(lián)立直線與橢圓方程,消去y得到關(guān)于x的一元二次方程,得到根與系數(shù)的關(guān)系,再利用弦長公式即可得出.【詳解】解:(1)由題意可得,解得:,,橢圓C的方程為;(2)設(shè),聯(lián)立,得,,,,解得.【點睛】本題考查了橢圓的標(biāo)準方程及其性質(zhì)、韋達定理、弦長公式,屬于中檔題.19、(1)證明見解析;(2)證明見解析【解析】(1)由平行關(guān)系轉(zhuǎn)化,可得,即可證明四點共面;(2)由條件證明與的交點既在平面上,又在平面上,即可證明.【詳解】證明(1)∵,∴∵,分別為,的中點,∴,∴,∴,,,四點共面(2)∵,不是,的中點,∴,且,故為梯形∴與必相交,設(shè)交點為,∴平面,平面,∴平面,且平面,∴,即與的交點在直線上20、(1)證明見解析(2)3【解析】(1)證明出,且,從而證明出線面垂直;(2)先用椎體體積公式求出,利用體積之比得到線段之比,從而得到的值.【小問1詳解】證明:∵平面ABCD,且平面ABCD,∴.又因為,且,∴四邊形ABCD為直角梯形.又因為,,易得,,∴,∴.又因為AC,PA是平面PAC的兩條相交直線,∴平面PAC.【小問2詳解】由(1)知且,∴.又∵平面ABCD,.又∵,∴,∴點M到平面ABC的距離為,∴,∴.21、(1)(2)【解析】(1)利用正弦定理化簡,通過兩角和與差的三角函數(shù)求出,即可得到結(jié)果(2)利用三角形的面積求出,通過由余弦定理求解即可【詳解】解:(1)因為bcosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【點睛】本題主要考查了利用正、余弦定理及三角形的面積公式解三角形問題,其中在解有關(guān)三角形的題目時,要有意識地考慮用哪個定理更合適,或是兩個定理都要用.一般地,如果式子中含有角的余弦或邊的二次式時,要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到22、(1)函數(shù)的減區(qū)間為,增區(qū)間為,有極小值,無極大值;(2)具體見解析;(3)具體見解析.【解析】(1)對函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論