2026屆云南省祿豐縣民族中學高二數(shù)學第一學期期末調研模擬試題含解析_第1頁
2026屆云南省祿豐縣民族中學高二數(shù)學第一學期期末調研模擬試題含解析_第2頁
2026屆云南省祿豐縣民族中學高二數(shù)學第一學期期末調研模擬試題含解析_第3頁
2026屆云南省祿豐縣民族中學高二數(shù)學第一學期期末調研模擬試題含解析_第4頁
2026屆云南省祿豐縣民族中學高二數(shù)學第一學期期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆云南省祿豐縣民族中學高二數(shù)學第一學期期末調研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則下列正確的是()A. B.C. D.2.設雙曲線()的焦距為12,則()A.1 B.2C.3 D.43.已知等比數(shù)列中,,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前項和為()A. B.C. D.4.已知直線與圓相離,則以,,為邊長的三角形為()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不存在5.向量,向量,若,則實數(shù)()A. B.1C. D.6.已知隨機變量X服從二項分布X~B(4,),()A. B.C. D.7.曲線上存在兩點A,B到直線到距離等于到的距離,則()A.12 B.13C.14 D.158.設圓上的動點到直線的距離為,則的取值范圍是()A. B.C. D.9.已知函數(shù)與,則它們的圖象交點個數(shù)為()A.0 B.1C.2 D.不確定10.若直線的方向向量為,平面的法向量為,則()A. B.C. D.與相交但不垂直11.動點P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.12.若公差不為0的等差數(shù)列的前n項和是,,且,,為等比數(shù)列,則使成立的最大n是()A.6 B.10C.11 D.12二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若過點存在三條直線與曲線相切,則的取值范圍為___________14.正四棱柱的高為底面邊長的倍,則其體對角線與底面所成角的大小為_________.15.已知函數(shù),則函數(shù)在上的最大值為_______16.函數(shù)在點處的切線方程是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點為橢圓C的右焦點,P為橢圓上一點,且(O為坐標原點),.(1)求橢圓C的標準方程;(2)經(jīng)過點的直線l與橢圓C交于A,B兩點,求弦的取值范圍.18.(12分)如圖,在四棱柱中,,,,四邊形為菱形,在平面ABCD內(nèi)的射影O恰好為AD的中點,M為AB的中點.(1)求證:平面;(2)求平面與平面夾角的余弦值.19.(12分)已知直線與雙曲線相交于、兩點.(1)當時,求;(2)是否存在實數(shù),使以為直徑的圓經(jīng)過坐標原點?若存在,求出的值;若不存在,說明理由.20.(12分)某城市100戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù)21.(12分)已知數(shù)列,,,且,其中為常數(shù)(1)證明:;(2)是否存在,使得為等差數(shù)列?并說明理由22.(10分)圓心在軸正半軸上、半徑為2的圓與直線相交于兩點且.(1)求圓的標準方程;(2)若直線,圓上僅有一個點到直線的距離為1,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)不等式性質并結合反例,即可判斷命題真假.【詳解】對于選項A:若,則,由題意,,不妨令,,則此時,這與結論矛盾,故A錯誤;對于選項B:當時,若,則,故B錯誤;對于選項C:由,不妨令,,則此時,故C錯誤;對于選項D:由不等式性質,可知D正確.故選:D.2、B【解析】根據(jù)可得關于的方程,解方程即可得答案.【詳解】因為可化為,所以,則.故選:B.【點睛】本題考查已知雙曲線的焦距求參數(shù)的值,考查函數(shù)與方程思想,考查運算求解能力,屬于基礎題.3、B【解析】確實新數(shù)列是等比數(shù)列及公比、首項后,由等比數(shù)列前項和公式計算,【詳解】由題意,新數(shù)列為,所以,,前項和為故選:B.4、A【解析】應用直線與圓的相離關系可得,再由余弦定理及三角形內(nèi)角的性質即可判斷三角形的形狀.【詳解】由題設,,即,又,所以,且,故以,,為邊長的三角形為鈍角三角形.故選:A.5、C【解析】由空間向量垂直的坐標表示列方程即可求解.【詳解】因為向量,向量,若,則,解得:,故選:C.6、D【解析】利用二項分布概率計算公式,計算出正確選項.【詳解】∵隨機變量X服從二項分布X~B(4,),∴.故選:D.7、D【解析】由題可知A,B為半圓C與拋物線的交點,利用韋達定理及拋物線的定義即求.【詳解】由曲線,可得,即,為圓心為,半徑為7半圓,又直線為拋物線的準線,點為拋物線的焦點,依題意可知A,B為半圓C與拋物線的交點,由,得,設,則,,∴.故選:D.8、C【解析】求出圓心到直線距離,再借助圓的性質求出d的最大值與最小值即可.【詳解】圓的方程化為,圓心為,半徑為1,則圓心到直線的距離,即直線和圓相離,因此,圓上的動點到直線的距離,有,,即,即的取值范圍是:.故選:C9、B【解析】令,判斷的單調性并計算的極值,根據(jù)極值與0的大小關系判斷的零點個數(shù),得出答案.【詳解】令,則,由,得,∴當時,,當時,.∴當時,取得最小值,∴只有一個零點,即與的圖象只有1個交點.故選:B.10、B【解析】通過判斷直線的方向向量與平面的法向量的關系,可得結論【詳解】因為,,所以,所以∥,因為直線的方向向量為,平面的法向量為,所以,故選:B11、B【解析】設,根據(jù)兩點間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質,即可得答案.【詳解】設,圓化簡為,即圓心為(0,4),半徑為,所以點P到圓心的距離,令,則,令,,為開口向上,對稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B12、C【解析】設等差數(shù)列的公差為d,根據(jù),且,,為等比數(shù)列,求得首項和公差,再利用前n項和公式求解.【詳解】設等差數(shù)列的公差為d,因為,且,,為等比數(shù)列,所以,解得或(舍去),則,所以,解得,所以使成立的最大n是11,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設過M的切線切點為,求出切線方程,參變分離得,令,則原問題等價于y=g(x)與y=-m-2的圖像有三個交點,根據(jù)導數(shù)研究g(x)的圖像即可求出m的范圍【詳解】,設過點的直線與曲線相切于點,則,化簡得,,令,則過點存在三條直線與曲線相切等價于y=g(x)與y=-m-2的圖像有三個交點∵,故當x<0或x>1時,,g(x)單調遞增;當0<x<1時,,g(x)單調遞減,又,,∴g(x)如圖,∴-2<-m-2<0,即故答案為:﹒14、##【解析】如圖所示,其體對角線與底面所成角為,解三角形即得解.【詳解】解:如圖所示,設,所以.由題得平面,則其體對角線與底面所成角為,因為,所以.故答案為:15、【解析】利用導數(shù)單調性求出的單調性,比較極小值與兩端點,的大小求出在上的最大值.【詳解】因為,則,令,即時,函數(shù)單調遞增.令,即時,函數(shù)單調遞減.所以的單調遞減區(qū)間為,的單調遞增區(qū)間為,所以在上單調遞減,在上單調遞增,所以函數(shù)的極小值也是函數(shù)的最小值.,兩端點為,,即最大值為.故答案為:.16、【解析】求得函數(shù)的導數(shù),得到且,再結合直線的點斜式,即可求解.【詳解】由題意,函數(shù),可得,則且,所以在點處切線方程是,即故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用橢圓定義求得橢圓的即可解決;(2)經(jīng)過點的直線l分為斜率不存在和存在兩種情況,分別去求弦,再去求其取值范圍即可.【小問1詳解】由題意得.記左焦點為,,則,,解得.由橢圓定義得:,則,所以橢圓C的方程為:.【小問2詳解】①當直線l的斜率不存在時,.②當直線l的斜率存在時,設斜率為k,則l的方程為.聯(lián)立橢圓與直線的方程(由于點在橢圓內(nèi),∴成立),且,,令,則,,,由得,綜上所述,弦的取值范圍為.【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關系,并結合題設條件建立有關參變量的等量關系(2)涉及到直線方程的設法時,務必考慮全面,不要忽略直線斜率為0或不存在等特殊情形18、(1)證明見解析(2)【解析】(1)先證明,,即可證明平面;(2)建立空間直角坐標系,利用向量法求解即可.【小問1詳解】因為O為在平面ABCD內(nèi)的射影,所以平面ABCD,因為平面ABCD,所以.如圖,連接BD,在中,.設CD的中點為P,連接BP,因為,,,所以,且,則.因為,所以,易知,所以.因為平面,平面,,所以平面.【小問2詳解】由(1)知平面ABCD,所以可以點O為坐標原點,以OA,,所在直線分別為x,z,以平面ABCD內(nèi)過點O且垂直于OA的直線為y軸,建立如圖所示的空間直角坐標系,則,,,,,所以,,,,設平面的法向量為,,,則可取平面的一個法向量為.設平面的法向量為,,,則令,得平面的一個法向量為.設平面與平面的平面角為,由法向量的方向可知與法向量的夾角大小相等,所以,所以平面與平面夾角的余弦值為.19、(1);(2)不存在,理由見解析.【解析】(1)當時,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,利用弦長公式可求得;(2)假設存在實數(shù),使以為直徑的圓經(jīng)過坐標原點,設、,將直線與雙曲線的方程聯(lián)立,列出韋達定理,由已知可得出,利用平面向量數(shù)量積的坐標運算結合韋達定理可得出,即可得出結論.【小問1詳解】解:設點、,當時,聯(lián)立,可得,,由韋達定理可得,,所以,.【小問2詳解】解:假設存在實數(shù),使以為直徑的圓經(jīng)過坐標原點,設、,聯(lián)立得,由題意可得,解得且,由韋達定理可知,因為以為直徑的圓經(jīng)過坐標原點,則,所以,,整理可得,該方程無實解,故不存在.20、(1);(2)眾數(shù)是,中位數(shù)為【解析】(1)利用頻率之和為一可求得的值;(2)眾數(shù)為最高小矩形底邊中點的橫坐標;中位數(shù)左邊和右邊的直方圖的面積相等可求得中位數(shù)試題解析:(1)由直方圖的性質可得,∴(2)月平均用電量的眾數(shù)是,∵,月平均用電量的中位數(shù)在內(nèi),設中位數(shù)為,由,可得,∴月平均用電量的中位數(shù)為224考點:頻率分布直方圖;中位數(shù);眾數(shù)21、(1)證明見解析(2)存在;理由見解析【解析】(1)由得兩式相減可得答案;(2)利用得,可得,是首項為1,公差為4的等差數(shù)列,是首項為3,公差為4的等差數(shù)列,因此存在【小問1詳解】由題設,,,兩式相減得,,由于,所以【小問2詳解】由題設,,,可得,由(1)知,.令,解得,故,由此可得,是首項為1,公差為4的等差數(shù)列,;又,同理,是首項為3,公差為4的等差數(shù)列,所以,所以.因此存在,使得為等差數(shù)列22、(1);(2)或.【解析】(1)根據(jù)圓的弦長公式進行求解即可;(2)根據(jù)平行線的性質,結合直線與圓的位置關系進行求解即可.小問1詳解】因為圓的圓心在軸正半軸上、半徑為2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論