版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
吉林省遼源市2026屆高二上數(shù)學期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.與直線關于軸對稱的直線的方程為()A. B.C. D.2.已知圓與拋物線的準線相切,則實數(shù)p的值為()A.2 B.6C.3或8 D.2或63.函數(shù)y=的最大值為Ae-1 B.eC.e2 D.4.在正四面體中,棱長為2,且E是棱AB中點,則的值為A. B.1C. D.5.二項式的展開式中,各項二項式系數(shù)的和是()A.2 B.8C.16 D.326.已知橢圓的左、右焦點分別為,,直線過且與橢圓相交于不同的兩點,、不在軸上,那么△的周長()A.是定值B.是定值C.不是定值,與直線的傾斜角大小有關D.不是定值,與取值大小有關7.已知直線,若直線與垂直,則的傾斜角為()A. B.C. D.8.若是真命題,是假命題,則A.是真命題 B.是假命題C.是真命題 D.是真命題9.對數(shù)的創(chuàng)始人約翰·奈皮爾(JohnNapier,1550-1617)是蘇格蘭數(shù)學家.直到18世紀,瑞士數(shù)學家歐拉發(fā)現(xiàn)了指數(shù)與對數(shù)的互逆關系,人們才認識到指數(shù)與對數(shù)之間的天然關系對數(shù)發(fā)現(xiàn)前夕,隨著科技的發(fā)展,天文學家做了很多的觀察,需要進行很多計算,特別是大數(shù)的連乘,需要花費很長時間.基于這種需求,1594年,奈皮爾運用了獨創(chuàng)的方法構造出對數(shù)方法.現(xiàn)在隨著科學技術的需要,一些冪的值用數(shù)位表示,譬如,所以的數(shù)位為4.那么的數(shù)位是()(注)A.6 B.7C.606 D.60710.已知平面的一個法向量為,則x軸與平面所成角的大小為()A. B.C. D.11.如圖所示的程序框圖,閱讀下面的程序框圖,則輸出的S=()A.14 B.20C.30 D.5512.過點,的直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或4二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的兩個焦點分別為,,為雙曲線上一點,且,則的值為________14.已知圓的半徑為3,,為該圓的兩條切線,為切點,則的最小值為___________.15.已知數(shù)列{an}滿足an+2=an+1-an(n∈N*),且a1=2,a2=3,則a2022的值為_________.16.圍棋是一種策略性兩人棋類游戲.已知某圍棋盒子中有若干粒黑子和白子,從盒子中取出2粒棋子,2粒都是黑子的概率為,2粒恰好是同一色的概率比不同色的概率大,則2粒恰好都是白子的概率是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)平面直角坐標系中,過橢圓:右焦點的直線交M于A,B兩點,P為AB的中點,且OP的斜率為.(1)求橢圓M的方程;(2)C,D為橢圓M上的兩點,若四邊形ACBD的對角線CD與AB垂直,求四邊形ACBD面積的最大值.18.(12分)已知等差數(shù)列的前項和為,且,(1)求數(shù)列的通項公式;(2)若數(shù)列滿足,求數(shù)列的前項和19.(12分)已知數(shù)列滿足,數(shù)列為等差數(shù)列,,前4項和.(1)求數(shù)列,的通項公式;(2)求和:.20.(12分)在等差數(shù)列{an}中,a3+a4=15,a2a5=54,公差d<0.(1)求數(shù)列{an}的通項公式an;(2)求數(shù)列的前n項和Sn的最大值及相應的n值21.(12分)已知數(shù)列滿足各項均不為0,,且,.(1)證明:為等差數(shù)列,并求的通項公式;(2)令,,求.22.(10分)已知函數(shù)的圖像在(為自然對數(shù)的底數(shù))處取得極值.(1)求實數(shù)的值;(2)若不等式在恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】點關于x軸對稱,橫坐標不變,縱坐標互為相反數(shù),據(jù)此即可求解.【詳解】設(x,y)是與直線關于軸對稱的直線上任意一點,則(x,-y)在上,故,∴與直線關于軸對稱的直線的方程為.故選:D.2、D【解析】由拋物線準線與圓相切,結合拋物線方程,令求切線方程且拋物線準線方程為,即可求參數(shù)p.【詳解】圓的標準方程為:,故當時,有或,所以或,得或6故選:D3、A【解析】,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的最大值為時,y==故選A點睛:研究函數(shù)最值主要根據(jù)導數(shù)研究函數(shù)的單調(diào)性,找到最值,分式求導公式要記熟4、A【解析】根據(jù)題意,由正四面體的性質(zhì)可得:,可得,由E是棱中點,可得,代入,利用數(shù)量積運算性質(zhì)即可得出.【詳解】如圖所示由正四面體的性質(zhì)可得:可得:是棱中點故選:【點睛】本題考查空間向量的線性運算,考查立體幾何中的垂直關系,考查轉(zhuǎn)化與化歸思想,屬于中等題型.5、D【解析】根據(jù)給定條件利用二項式系數(shù)的性質(zhì)直接計算作答.【詳解】二項式的展開式的各項二項式系數(shù)的和是.故選:D6、B【解析】由直線過且與橢圓相交于不同的兩點,,且,為橢圓兩焦點,根據(jù)橢圓的定義即可得△的周長為,則答案可求【詳解】橢圓,橢圓的長軸長為,∴△的周長為故選:B7、D【解析】由直線與垂直得到的斜率,再利用斜率與傾斜角的關系即可得到答案.【詳解】因為直線與垂直,且,所以,解得,設的傾斜角為,,所以.故選:D8、D【解析】因為是真命題,是假命題,所以是假命題,選項A錯誤,是真命題,選項B錯誤,是假命題,選項C錯誤,是真命題,選項D正確,故選D.考點:真值表的應用.9、D【解析】根據(jù)已知條件,設,則,求出t的范圍,即可判斷其數(shù)位.【詳解】設,則,則,則,,的數(shù)位是607.故選:D.10、C【解析】依題意可得軸的方向向量可以為,再利用空間向量法求出線面角的正弦值,即可得解;【詳解】解:依題意軸的方向向量可以為,設x軸與平面所成角為,則,因為,所以,故選:C11、C【解析】經(jīng)分析為直到型循環(huán)結構,按照循環(huán)結構進行執(zhí)行,當滿足跳出的條件時即可輸出值【詳解】解:第一次循環(huán)S=1,i=2;第二次循環(huán)S=1+22=5,i=3;第三次循環(huán)S=5+32=14,i=4;第四次循環(huán)S=14+42=30,i=5;此時5>4,跳出循環(huán),故輸出的值為30故選:C.12、A【解析】解方程即得解.【詳解】由題得.故選:A【點睛】本題主要考查斜率的計算,意在考查學生對該知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】求得雙曲線的a,b,c,不妨設P為雙曲線右支上的點,|PF1|=m,|PF2|=n,利用雙曲線的定義、余弦定理列出方程組,求出mn即可.【詳解】雙曲線的a=2,b=1,c=,不妨設P為雙曲線右支上的點,|PF1|=m,|PF2|=n,則,①由余弦定理可得,②聯(lián)立①②可得故答案為:214、【解析】設(),,則,,,根據(jù)數(shù)量積的定義和余弦的二倍角公式結合基本不等式即可求解詳解】如圖所示,設(),,則,,,,當且僅當即時等號成立,∴的最小值是.故答案為:15、【解析】根據(jù)遞推關系求出數(shù)列的前幾項,得周期性,然后可得結論【詳解】由題意,,,,,,所以數(shù)列是周期數(shù)列,周期為6,所以故答案為:16、【解析】根據(jù)互斥事件與對立事件概率公式求解即可【詳解】設“2粒都是黑子”為事件,“2粒都是白子”為事件,“2粒恰好是同一色”為事件,“2粒不同色”為事件,則事件與事件是對立事件,所以因為2粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件與互斥,所以,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設,,的中點為,利用“點差法”求解;(2)由求得A,B的坐標,進而得到的長,再根據(jù),設直線的方程為,由,求得的長,然后由四邊形的面積為求解.【小問1詳解】解:把右焦點代入直線,得,設,,的中點為,則,,相減得,即,即,即.又,,則.又,解得,,故橢圓的方程為.【小問2詳解】聯(lián)立消去,可得,解得或,故交點為,.所以.因為,所以可設直線的方程為,,,聯(lián)立消去,得到,因為直線與橢圓有兩個不同的交點,則,解得,且,又,則.故四邊形的面積為,故當時,取得最大值,最大值為.所以四邊形的面積的最大值為.18、(1);(2).【解析】(1)設等差數(shù)列的公差為,根據(jù)已知條件可得出關于、的方程組,解出這兩個量的值,即可求得數(shù)列的通項公式;(2)求得,利用裂項相消法可求得.【小問1詳解】解:設等差數(shù)列公差為,,【小問2詳解】解:,.19、(1),;(2).【解析】(1)根據(jù)等比數(shù)列的定義,結合等差數(shù)列的基本量,即可容易求得數(shù)列,的通項公式;(2)根據(jù)(1)中所求,構造數(shù)列,證明其為等比數(shù)列,利用等比數(shù)列的前項和即可求得結果.【小問1詳解】因為數(shù)列滿足,故可得數(shù)列為等比數(shù)列,且公比,則;數(shù)列為等差數(shù)列,,前4項和,設其公差為,故可得,解得,則;綜上所述,,.【小問2詳解】由(1)可知:,,故,又,又,則是首項1,公比為的等比數(shù)列;則.20、(1);(2)當或11時,最大值為55.【解析】(1)根據(jù)等差數(shù)列的通項公式得方程組,解這個方程組得公差和首項,從而得數(shù)列的通項公式n.(2)等差數(shù)列的前項和是關于的二次式,將這個二次式配方即可得最大值.【詳解】(1)由題設,故(舍,此時)或.故,故.(2)由(1)可得,因為,對稱方程為,故當或時,取最大值,此時最大值為.21、(1)證明見解析,,(2)【解析】(1)根據(jù)題意,結合遞推公式,易知,即可求證;(2)根據(jù)題意,結合錯位相減法,即可求解.【小問1詳解】∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026江蘇連云港市灌云萬邦人力資源有限公司招聘10人考試備考試題及答案解析
- 2025年港大中國語言文學筆試及答案
- 2025年臨沂下半年事業(yè)編考試及答案
- 2025年撫州國企招聘筆試及答案
- 2025年秘書職業(yè)技能大賽筆試題及答案
- 2025年沈陽工程輔導員筆試及答案
- 2025年杭商傳媒記者崗筆試及答案
- 2025年百度財務助理筆試及答案
- 湖北省省屬國企外包員工招聘3人筆試備考試題及答案解析
- 2025年農(nóng)職院中職筆試真題及答案
- 城市軌道交通服務員(城市軌道交通站務員)考核要素細目表與考核內(nèi)容結構表
- JBT 12530.4-2015 塑料焊縫無損檢測方法 第4部分:超聲檢測
- 江西省吉安市初中生物七年級期末下冊高分預測題詳細答案和解析
- 《中國心力衰竭診斷和治療指南2024》解讀(總)
- DZ∕T 0033-2020 固體礦產(chǎn)地質(zhì)勘查報告編寫規(guī)范(正式版)
- 瀝青拌合站方案
- (汪曉贊)運動教育課程模型
- GB/T 42677-2023鋼管無損檢測無縫和焊接鋼管表面缺欠的液體滲透檢測
- 輪機英語題庫
- 神木市孫家岔鎮(zhèn)神能乾安煤礦礦山地質(zhì)環(huán)境保護與土地復墾方案
- 藥店質(zhì)量管理制度執(zhí)行情況檢查考核記錄表
評論
0/150
提交評論