版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆河南省商開九校聯(lián)考高二上數(shù)學期末質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.【山東省濰坊市二?!恳阎p曲線的離心率為,其左焦點為,則雙曲線的方程為()A. B.C. D.2.拋物線的焦點到準線的距離為()A. B.C. D.3.已知向量,,則等于()A. B.C. D.4.已知拋物線的焦點為F,直線l經(jīng)過點F交拋物線C于A,B兩點,交拋物淺C的準線于點P,若,則為()A.2 B.3C.4 D.65.設實數(shù)x,y滿足,則目標函數(shù)的最大值是()A. B.C.16 D.326.在公比為為q等比數(shù)列中,是數(shù)列的前n項和,若,則下列說法正確的是()A. B.數(shù)列是等比數(shù)列C. D.7.某海關緝私艇在執(zhí)行巡邏任務時,發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機械故障,20min后才以的速度開始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時間為()A.1h B.C. D.8.圓心在x軸負半軸上,半徑為4,且與直線相切的圓的方程為()A. B.C. D.9.如圖,在平行六面體中,設,,,用基底表示向量,則()A. B.C. D.10.已知a,b為正實數(shù),且,則的最小值為()A.1 B.2C.4 D.611.函數(shù),則不等式的解集是()A. B.C. D.12.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q二、填空題:本題共4小題,每小題5分,共20分。13.已知兩平行直線與間的距離為3,則C的值是________.14.在正方體中,,,P,F(xiàn)分別是線段,的中點,則點P到直線EF的距離是___________.15.已知直線與直線平行,則直線,之間的距離為__________.16.某中學高一年級有420人,高二年級有460人,高三年級有500人,用分層抽樣的方法抽取部分樣本,若從高一年級抽取21人,則從高三年級抽取的人數(shù)是__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和為,且滿足,,成等比數(shù)列,.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.18.(12分)已知直線,圓.(1)求證:直線l恒過定點;(2)若直線l的傾斜角為,求直線l被圓C截得的弦長.19.(12分)已知是橢圓的兩個焦點,P為C上一點,O為坐標原點(1)若為等邊三角形,求C的離心率;(2)如果存在點P,使得,且的面積等于16,求b的值和a的取值范圍.20.(12分)在平面直角坐標系中,已知直線(t為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)設點的直角坐標為,直線與曲線的交點為,求的值.21.(12分)已知橢圓與橢圓的焦點相同,且橢圓C過點(1)求橢圓C的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點A,B,且(O為坐標原點),若存在,求出該圓的方程;若不存在,說明理由22.(10分)函數(shù)(1)求在上的單調(diào)區(qū)間;(2)當時,不等式恒成立,求實數(shù)a的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分析:根據(jù)題設條件,列出方程,求出,,的值,即可求得雙曲線得標準方程詳解:∵雙曲線的離心率為,其左焦點為∴,∴∵∴∴雙曲線的標準方程為故選D.點睛:本題考查雙曲線的標準方程,雙曲線的簡單性質(zhì)的應用,根據(jù)題設條件求出,,的值是解決本題的關鍵.2、B【解析】根據(jù)拋物線的幾何性質(zhì)可得選項.【詳解】由得,所以,所以拋物線的焦點到準線的距離為1,故選:B.3、C【解析】根據(jù)題意,結合空間向量的坐標運算,即可求解.【詳解】由,,得,因此.故選:C.4、C【解析】由題意可知設,由可得,可求得,,根據(jù)模長公式計算即可得出結果.【詳解】由題意可知,準線方程為,設,可知,,解得:,代入到拋物線方程可得:.,故選:C5、C【解析】求的最大值即求的最大值,根據(jù)約束條件畫出可行域,將目標函數(shù)看成直線,直線經(jīng)過可行域內(nèi)的點,將目標與直線的截距建立聯(lián)系,然后得到何時目標值取得要求的最值,進而求得的最大值,最后求出的最大值.【詳解】要求的最大值即求的最大值.根據(jù)實數(shù),滿足的條件作出可行域,如圖.將目標函數(shù)化為.則表示直線在軸上的截距的相反數(shù).要求的最大值,即求直線在軸上的截距最小值.如圖當直線過點時,在軸上的截距最小值.由,解得所以的最大值為,則的最大值為16.故選:C.6、D【解析】根據(jù)等比數(shù)列的通項公式、前項和公式的基本量運算,即可得到答案;【詳解】,,故A錯誤;,,顯然數(shù)列不是等比數(shù)列,故B錯誤;,故C錯誤;,,故D成立;故選:D7、A【解析】設小時后,相遇地點為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點,建立如下圖所示的直角坐標系.圖中走私船所在位置為,設緝私艇追上走私船的最短時間為,相遇地點為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因為20min后緝私艇才以的速度開始追趕走私船,所以20min走私船行走了,到達.在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡得:,則.緝私艇追上走私船只的最短時間為1h.故選:A.點睛】8、A【解析】根據(jù)題意,設圓心為坐標為,,由直線與圓相切的判斷方法可得圓心到直線的距離,解得的值,即可得答案【詳解】根據(jù)題意,設圓心為坐標為,,圓的半徑為4,且與直線相切,則圓心到直線的距離,解得:或13(舍,則圓的坐標為,故所求圓的方程為,故選:A9、B【解析】直接利用空間向量基本定理求解即可【詳解】因為在平行六面體中,,,,所以,故選:B10、D【解析】利用基本不等式“1”的妙用求最值.【詳解】因為a,b為正實數(shù),且,所以.當且僅當,即時取等號.故選:D11、A【解析】利用導數(shù)判斷函數(shù)單調(diào)遞增,然后進行求解.【詳解】對函數(shù)進行求導:,因為,,所以,因為,所以f(x)是奇函數(shù),所以在R上單調(diào)遞增,又因為,所以的解集為.故選:A12、B【解析】取x=4,得出命題p是假命題,由對數(shù)的運算得出命題q是假命題,再判斷選項.【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)兩條平行直線之間的距離公式即可得解.【詳解】兩平行直線與間的距離為3,所以,所以故答案為:14、【解析】以A為坐標原點建立空間直角坐標系,利用向量法即可求解點P到直線EF的距離.【詳解】解:如圖,以A為坐標原點,,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,因為,所以,,,所以,,所以點P到直線EF的距離.故答案為:.15、【解析】利用直線平行與斜率之間的關系、點到直線的距離公式即可得出【詳解】解:因為直線與直線平行,所以,解得,當時,,,則故答案為:【點睛】熟練運用直線平行與斜率之間的關系、點到直線的距離公式,是解題關鍵16、25【解析】由條件先求出抽樣比,從而可求出從高三年級抽取的人數(shù).【詳解】由題意抽樣比例:則從高三年級抽取的人數(shù)是人故答案為:25三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由可得數(shù)列是公差為2的等差數(shù)列,再由,,成等比數(shù)列,列方程可求出,從而可求得數(shù)列的通項公式;(2)由(1)可得,然后利用裂項相消求和法可求出【詳解】解:(1)由,可得,即數(shù)列是公差為2的等差數(shù)列.所以,,.由題意得,解得,所以.(2)由(1)可得,所以數(shù)列的前項和.18、(1)證明見解析(2)【解析】(1)直線方程變形后令的系數(shù)等于0消去參數(shù)即可求得定點坐標.(2)先求出圓心C到直線l距離,然后用勾股定理即可求得弦長.【小問1詳解】,聯(lián)立得:即直線l過定點(.【小問2詳解】由題意直線l的斜率,即,∴,圓,圓心,半徑,圓心C到直線l的距離,所以直線l被圓C所截得的弦長為.19、(1);(2),a的取值范圍為.【解析】(1)先連結,由為等邊三角形,得到,,;再由橢圓定義,即可求出結果;(2)先由題意得到,滿足條件的點存在,當且僅當,,,根據(jù)三個式子聯(lián)立,結合題中條件,即可求出結果.【詳解】(1)連結,由等邊三角形可知:在中,,,,于是,故橢圓C的離心率為;(2)由題意可知,滿足條件的點存在,當且僅當,,,即①②③由②③以及得,又由①知,故;由②③得,所以,從而,故;當,時,存在滿足條件的點.故,a的取值范圍為.【點睛】本題主要考查求橢圓的離心率,以及橢圓中存在定點滿足題中條件的問題,熟記橢圓的簡單性質(zhì)即可求解,考查計算能力,屬于中檔試題.20、(1);(2)3.【解析】(1)把展開得,兩邊同乘得,再代極坐標公式得曲線的直角坐標方程.(2)將代入曲線C的直角坐標方程得,再利用直線參數(shù)方程t的幾何意義和韋達定理求解.【詳解】(1)把展開得,兩邊同乘得①將代入①,即得曲線的直角坐標方程為②(2)將代入②式,得,點M的直角坐標為(0,3),設這個方程的兩個實數(shù)根分別為t1,t2,則∴t1<0,t2<0則由參數(shù)t的幾何意義即得.【點睛】本題主要考查極坐標和直角坐標的互化、直線參數(shù)方程t的幾何意義,屬于基礎題.21、(1);(2)存在,.【解析】(1)與焦點相同可求出c,將代入方程結合a、b、c關系即可求a和b;(2)直線AB斜率存在時,設直線AB的方程為,聯(lián)立AB方程與橢圓方程,得到根與系數(shù)的關系;由得,結合韋達定理得k與m的關系;再由圓與直線相切,即可求其半徑;最后再驗證AB斜率不存在時的情況即可.【小問1詳解】,由題可知,解得點,所以橢圓的方程為;【小問2詳解】設,設,代入,整理得,由得,即,由韋達定理化簡得,即,設存在圓與直線相切,則,解得,所以圓的方程為,又若軸時,檢驗知滿足條件,故存在圓心在原點的圓符合題意22、(1)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB 6141-2025豆科草種子
- 養(yǎng)老院入住老人突發(fā)疾病應急處理制度
- 企業(yè)質(zhì)量管理體系制度
- 2025年臨汾市體育運動學校招聘考試真題
- 變壓器線圈制造工安全應急評優(yōu)考核試卷含答案
- 鋁電解操作工復試模擬考核試卷含答案
- 我國上市公司社會責任報告質(zhì)量評價:體系構建與實證分析
- 我國上市公司技術創(chuàng)新的雙輪驅動:股票流動性與股權集中度的協(xié)同效應
- 我國上市公司定向增發(fā)股價效應及其影響因素:基于多維度視角的剖析
- 我國上市公司內(nèi)部治理與公司競爭力關系的實證剖析:基于多維度視角
- 宗族團年活動方案
- 2025至2030中國碳納米管行業(yè)市場發(fā)展分析及風險與對策報告
- 車企核心用戶(KOC)分層運營指南
- 兒童課件小學生講繪本成語故事《69狐假虎威》課件
- 湖北中煙2025年招聘綜合測試
- 不銹鋼管道酸洗鈍化方案
- 2025年高考時事政治高頻考點(107條)
- O2O商業(yè)模式研究-全面剖析
- 企業(yè)成本管理分析
- ISO14001-2015環(huán)境管理體系風險和機遇識別評價分析及應對措施表(包含氣候變化)
- 2024-2025學年山西省太原市高一上冊期末數(shù)學檢測試題(附解析)
評論
0/150
提交評論