2026屆江西省撫州市臨川區(qū)第二中學高一上數(shù)學期末聯(lián)考試題含解析_第1頁
2026屆江西省撫州市臨川區(qū)第二中學高一上數(shù)學期末聯(lián)考試題含解析_第2頁
2026屆江西省撫州市臨川區(qū)第二中學高一上數(shù)學期末聯(lián)考試題含解析_第3頁
2026屆江西省撫州市臨川區(qū)第二中學高一上數(shù)學期末聯(lián)考試題含解析_第4頁
2026屆江西省撫州市臨川區(qū)第二中學高一上數(shù)學期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆江西省撫州市臨川區(qū)第二中學高一上數(shù)學期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.A B.C.1 D.2.函數(shù)的圖象如圖所示,則函數(shù)y的表達式是()A. B.C. D.3.已知,若,則的取值范圍是()A. B.C. D.4.已知,則下列選項中正確的是()A. B.C. D.5.下列函數(shù)中,最小正周期為,且圖象關于直線對稱的是A. B.C. D.6.已知,,,則()A. B.C. D.7.函數(shù),則函數(shù)()A.在上是增函數(shù) B.在上是減函數(shù)C.在是增函數(shù) D.在是減函數(shù)8.下列函數(shù)中,既是偶函數(shù),又在區(qū)間上是增函數(shù)的是()A. B.C. D.9.函數(shù)的定義域為()A.B.且C.且D.10.已知x>0,y>0,且x+2y=2,則xy()A.有最大值為1 B.有最小值為1C.有最大值為 D.有最小值為二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),方程有四個不相等的實數(shù)根(1)實數(shù)m的取值范圍為_____________;(2)的取值范圍為______________12.是第___________象限角.13.已知偶函數(shù),x∈R,滿足f(1-x)=f(1+x),且當0<x<1時,f(x)=ln(x+),e為自然數(shù),則當2<x<3時,函數(shù)f(x)的解析式為______14.體積為8的正方體的頂點都在同一球面上,則該球面的表面積為__________.15.,若,則________.16.函數(shù)的定義域是________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當時,求方程的解;(2)若,不等式恒成立,求的取值范圍.18.已知函數(shù),,(1)求的解析式和最小正周期;(2)求在區(qū)間上的最大值和最小值19.已知n為正整數(shù),集合Mn=x1,x2,???,xnx(1)當n=3時,設α=0,1,0,β=1,0,0,寫出α-(2)若集合S滿足S?M3,且?α,β∈S,dα,β=2,求集合(3)若α,β∈Mn,且dα,β=2,任取γ∈20.已知函數(shù),,設(其中表示中的較小者).(1)在坐標系中畫出函數(shù)的圖像;(2)設函數(shù)的最大值為,試判斷與1的大小關系,并說明理由.(參考數(shù)據(jù):,,)21.求解下列問題:(1)已知,,求的值;(2)已知,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題意可得:本題選擇A選項.2、A【解析】由函數(shù)的最大、最小值,算出和,根據(jù)函數(shù)圖像算出周期,利用周期公式算出.再由當時函數(shù)有最大值,建立關于的等式解出,即可得到函數(shù)的表達式.【詳解】函數(shù)的最大值為,最小值為,,,又函數(shù)的周期,,得.可得函數(shù)的表達式為,當時,函數(shù)有最大值,,得,可得,結(jié)合,取得,函數(shù)的表達式是.故選:.【點睛】本題給出正弦型三角函數(shù)的圖象,求它的解析式.著重考查了三角函數(shù)的周期公式、三角函數(shù)的圖象的變換與解析式的求法等知識屬于中檔題.3、B【解析】由以及,可得,即得,再根據(jù)基本不等式即可求的取值范圍.【詳解】解:,不妨設,若,由,得:,即與矛盾;同理,也可導出矛盾,故,,即,而,即,即,當且僅當,即時等號成立,又,故,即的取值范圍是.故選:B.4、A【解析】計算的取值范圍,比較范圍即可.【詳解】∴,,.∴.故選:A.5、B【解析】因為函數(shù)的最小正周期是,故先排除選項D;又對于選項C:,對于選項A:,故A、C均被排除,應選B.6、C【解析】因為所以選C考點:比較大小7、C【解析】根據(jù)基本函數(shù)單調(diào)性直接求解.【詳解】因為,所以函數(shù)在是增函數(shù),故選:C8、B【解析】先判斷定義域是否關于原點對稱,再將代入判斷奇偶性,進而根據(jù)函數(shù)的性質(zhì)判斷單調(diào)性即可【詳解】對于選項A,定義域為,,故是奇函數(shù),故A不符合條件;對于選項B,定義域為,,故是偶函數(shù),當時,,由指數(shù)函數(shù)的性質(zhì)可知,在上是增函數(shù),故B正確;對于選項C,定義域為,,故是偶函數(shù),當時,,由對數(shù)函數(shù)的性質(zhì)可知,在上是增函數(shù),則在上是減函數(shù),故C不符合條件;對于選項D,定義域為,,故是奇函數(shù),故D不符合條件,故選:B【點睛】本題考查判斷函數(shù)的奇偶性和單調(diào)性,熟練掌握函數(shù)的性質(zhì)是解題關鍵9、C【解析】根據(jù)給定函數(shù)有意義直接列出不等式組,解不等式組作答.【詳解】依題意,,解得且,所以的定義域為且.故選:C10、C【解析】利用基本不等式的性質(zhì)進行求解即可【詳解】,,且,(1),當且僅當,即,時,取等號,故的最大值是:,故選:【點睛】本題主要考查基本不等式的應用,注意基本不等式成立的條件二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.【解析】利用數(shù)形結(jié)合可得實數(shù)m的取值范圍,然后利用對數(shù)函數(shù)的性質(zhì)可得,再利用正弦函數(shù)的對稱性及二次函數(shù)的性質(zhì)即求.【詳解】作出函數(shù)與函數(shù)的圖象,則可知實數(shù)m的取值范圍為,由題可知,,∵,∴,即,又,,∴,又函數(shù)在上單調(diào)遞增,∴,即.故答案為:;.【點睛】關鍵點點睛;本題的關鍵是數(shù)形結(jié)合,結(jié)合對數(shù)函數(shù)的性質(zhì)及正弦函數(shù)的性質(zhì)可得,再利用二次函數(shù)的性質(zhì)即解.12、三【解析】根據(jù)給定的范圍確定其象限即可.【詳解】由,故在第三象限.故答案為:三.13、【解析】由f(1-x)=f(1+x),再由偶函數(shù)性質(zhì)得到函數(shù)周期,再求當2<x<3時f(x)解析式【詳解】因為f(x)是偶函數(shù),滿足f(1-x)=f(1+x),所以f(1+x)=f(x-1),所以f(x)周期是2當2<x<3時,0<x-2<1,所以f(x-2)=ln(x-2+)=f(x),所以函數(shù)f(x)的解析式為f(x)=ln(x-2+)故答案為f(x)=ln(x-2+)【點睛】本題主要考查函數(shù)的奇偶性,考查利用函數(shù)的周期性求解析式,意在考查學生對這些知識的理解掌握水平和分析推理能力.14、【解析】正方體體積8,可知其邊長為2,正方體的體對角線為=2,即為球的直徑,所以半徑為,所以球的表面積為=12π故答案為:12π點睛:設幾何體底面外接圓半徑為,常見的圖形有正三角形,直角三角形,矩形,它們的外心可用其幾何性質(zhì)求;而其它不規(guī)則圖形的外心,可利用正弦定理來求.若長方體長寬高分別為則其體對角線長為;長方體的外接球球心是其體對角線中點.找?guī)缀误w外接球球心的一般方法:過幾何體各個面的外心分別做這個面的垂線,交點即為球心.三棱錐三條側(cè)棱兩兩垂直,且棱長分別為,則其外接球半徑公式為:.15、【解析】分和兩種情況解方程,由此可得出的值.【詳解】當時,由,解得;當時,由,解得(舍去).綜上所述,.故答案為:.16、##【解析】利用對數(shù)的真數(shù)大于零可求得原函數(shù)的定義域.【詳解】對于函數(shù),,解得,故函數(shù)的定義域為.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)【解析】(1)由題意可得,由指數(shù)方程的解法即可得到所求解;(2)由題意可得,設,,,可得,即有,由對勾函數(shù)的單調(diào)性可不等式右邊的最大值,進而得到所求范圍【詳解】(1)方程,即為,即有,所以或,解得或;(2)若,不等式恒成立可得,即,設,,可得,即有,由在遞增,可得時取得最大值,即有【點睛】本題考查指數(shù)方程的解法和不等式恒成立問題的解法,注意運用換元法和參數(shù)分離法,結(jié)合對勾函數(shù)的單調(diào)性,考查運算能力和推理能力,屬于中檔題18、(1),;(2)最大值2,最小值【解析】(1)先將代入,結(jié)合求出函數(shù)解析式,再用公式求出最小正周期.(2)根據(jù),求出的范圍,再求出的范圍,即可得出在區(qū)間上的最大值和最小值.【詳解】解:(1)因為,,所以,所以,又因為,所以,故的解析式為,所以的最小正周期為.(2)因為,所以,所以,則,故在區(qū)間上的最大值2,最小值.【點睛】本題主要考查了三角函數(shù)的恒等變換的應用,三角函數(shù)的性質(zhì),注重對基礎知識的考查.19、(1)α-β=1,1,0(2)最大值是4,此時S=0,0,0,(3)2【解析】(1)根據(jù)定義直接求解即可;(2)根據(jù)定義,結(jié)合反證法進行求解即可;(3)根據(jù)定義,結(jié)合絕對值的性質(zhì)進行證明即可.【小問1詳解】α-β=1,1,0,【小問2詳解】最大值是4.此時S=0,0,0,若還有第5個元素,則必有1,0,0,0,1,1和0,0,1,1,1,0和0,1,0,1,0,1和1,1【小問3詳解】證明:設α=a1,a2所以ai,bi,ci∈0,1從而α-β=a又dα-γ,β-γ當ci=0時,當ci=1時,所以dα-γ,α-β所以dα-γ,α-β【點睛】關鍵點睛:運用分類討論法、反證法是解題的關鍵.20、(1)見解析;(2)見解析.【解析】(1)根據(jù)(其中表示中的較小者),即可畫出函數(shù)的圖像;(2)由題意可知,為函數(shù)與圖像交點的橫坐標,即,設,根據(jù)零點存在定理及函數(shù)在上單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論