2026屆湖北省荊、荊、襄、宜四地七校考試聯(lián)盟數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2026屆湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2026屆湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2026屆湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2026屆湖北省荊、荊、襄、宜四地七校考試聯(lián)盟數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆湖北省荊、荊、襄、宜四地七校考試聯(lián)盟數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.由1,2,3,4,5五個數(shù)組成沒有重復(fù)數(shù)字的五位數(shù),其中1與2不能相鄰的排法總數(shù)為()A.20 B.36C.60 D.722.已知實數(shù)滿足,則的取值范圍()A.-1m B.-1m<0或0<mC.m或m-1 D.m1或m-13.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.94.在棱長為2的正方體中,是棱上一動點,點是面的中心,則的值為()A.4 B.C.2 D.不確定5.不等式的解集為()A. B.C.或 D.或6.已知O為坐標(biāo)原點,,點P是上一點,則當(dāng)取得最小值時,點P的坐標(biāo)為()A. B.C. D.7.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于8.f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0則不等式f(x)g(x)<0的解集為A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)9.過點,的直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或410.若雙曲線的離心率為3,則的最小值為()A. B.1C. D.211.已知x,y滿足約束條件,則的最大值為()A.3 B.C.1 D.12.中,三邊長之比為,則為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不存在這樣的三角形二、填空題:本題共4小題,每小題5分,共20分。13.如圖的一系列正方形圖案稱為謝爾賓斯基地毯,圖案的做法是:把一個正方形分成9個全等的小正方形,對中間的一個小正方形進行著色得到第1個圖案(圖1);在第1個圖案中對沒有著色的小正方形再重復(fù)以上做法得到第2個圖案(圖2);以此類推,每進行一次操作,就得到一個新的正方形圖案,設(shè)原正方形的邊長為1,記第n個圖案中所有著色的正方形的面積之和為,則數(shù)列的通項公式______14.若命題P:對于任意,使不等式為真命題,則實數(shù)的取值范圍是___________.15.已知是雙曲線上的一點,是上的兩個焦點,若,則的取值范圍是_______________16.已知等比數(shù)列滿足,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列為正項等比數(shù)列,滿足,,數(shù)列滿足(1)求數(shù)列,的通項公式;(2)若數(shù)列的前n項和為,數(shù)列滿足,證明:數(shù)列的前n項和18.(12分)已知數(shù)列與滿足(1)若,且,求數(shù)列的通項公式;(2)設(shè)的第k項是數(shù)列的最小項,即恒成立.求證:的第k項是數(shù)列的最小項;(3)設(shè).若存在最大值M與最小值m,且,試求實數(shù)的取值范圍19.(12分)如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M為PC上一點,且PM=2MC.(1)求證:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱錐P-ADM的體積20.(12分)已知函數(shù)在處取得極值確定a的值;若,討論的單調(diào)性21.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓E:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為.點P是橢圓上的一動點,且P在第一象限.記的面積為S,當(dāng)時,.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)如圖,PF1,PF2的延長線分別交橢圓于點M,N,記和的面積分別為S1和S2.(i)求證:存在常數(shù)λ,使得成立;(ii)求S2-S1的最大值.22.(10分)奮發(fā)學(xué)習(xí)小組共有3名學(xué)生,在某次探究活動中,他們每人上交了1份作業(yè),現(xiàn)各自從這3份作業(yè)中隨機地取出了一份作業(yè).(1)每個學(xué)生恰好取到自己作業(yè)的概率是多少?(2)每個學(xué)生不都取到自己作業(yè)的概率是多少?(3)每個學(xué)生取到的都不是自己作業(yè)的概率是多少?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先排3,4,5,然后利用插空法在4個位置上選2個排1,2.【詳解】先排3,4,5,,共有種排法,然后在4個位置上選2個排列1,2,有種排法,則1與2不能相鄰的排法總數(shù)為種,故選:D.2、C【解析】把看成動點與所確定的直線的斜率,動點在所給曲線上.【詳解】就是點,所確定的直線的斜率,而在上,因為,.故選:C3、B【解析】首先地推公式變形,得,,求得數(shù)列的通項公式后,再解不等式.【詳解】因為,兩邊取倒數(shù),得,整理為:,,所以數(shù)列是首項為1,公差為4的等差數(shù)列,,,因為,即,得,解得:,,所以的最大值是7.故選:B4、A【解析】畫出圖形,建立空間直角坐標(biāo)系,用向量法求解即可【詳解】如圖,以為原點建立如圖所示的空間直角坐標(biāo)系,因為正方體棱長為2,點是面的中心,是棱上一動點,所以,,,故選:A5、A【解析】先將分式不等式轉(zhuǎn)化為一元二次不等式,然后求解即可【詳解】由,得,解得,所以原不等式的解集為,故選:A6、A【解析】根據(jù)三點共線,可得,然后利用向量的減法坐標(biāo)運算,分別求得,最后計算,經(jīng)過化簡觀察,可得結(jié)果.【詳解】設(shè),則則∴當(dāng)時,取最小值為-10,此時點P的坐標(biāo)為.故選:A【點睛】本題主要考查向量數(shù)量積的坐標(biāo)運算,難點在于三點共線,審清題干,簡單計算,屬基礎(chǔ)題.7、D【解析】由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D考點:平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論8、A【解析】構(gòu)造函數(shù)h(x)=f(x)g(x),由已知得當(dāng)x<0時,h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因為f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),得函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,得到f(x)g(x)<0不等式的解集【詳解】設(shè)h(x)=f(x)g(x),因為當(dāng)x<0時,f(x)g(x)+f(x)g(x)<0,所以當(dāng)x<0時,h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因為f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),所以函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,因為f(﹣1)=0,所以函數(shù)y=h(x)的大致圖象如下:所以等式f(x)g(x)<0的解集為(﹣1,0)∪(1,+∞)故選A【點睛】本題考查導(dǎo)數(shù)乘法法則、導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系;奇函數(shù)的單調(diào)性在對稱區(qū)間上一致,屬于中檔題9、A【解析】解方程即得解.【詳解】由題得.故選:A【點睛】本題主要考查斜率的計算,意在考查學(xué)生對該知識的理解掌握水平.10、D【解析】由雙曲線的離心率為3和,求得,化簡,結(jié)合基本不等式,即可求解.【詳解】由題意,雙曲線的離心率為3,即,即,又由,可得,所以,當(dāng)且僅當(dāng),即時,“”成立.故選:D【點睛】使用基本不等式解答問題的策略:1、利用基本不等式求最值時,要注意三點:一是各項為正;二是尋求定值;三是考慮等號成立的條件;2、若多次使用基本不等式時,容易忽視等號的條件的一致性,導(dǎo)致錯解;3、巧用“拆”“拼”“湊”:在使用基本不等式時,要特別注意“拆”“拼”“湊”等技巧,使其滿足基本不等式中的“正、定、等”的條件.11、A【解析】由題意首先畫出可行域,然后結(jié)合目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】繪制不等式組表示的平面區(qū)域如圖所示,結(jié)合目標(biāo)函數(shù)的幾何意義可知目標(biāo)函數(shù)在點A處取得最大值,聯(lián)立直線方程:,可得點A的坐標(biāo)為:,據(jù)此可知目標(biāo)函數(shù)的最大值為:.故選:A【點睛】方法點睛:求線性目標(biāo)函數(shù)的最值,當(dāng)時,直線過可行域且在y軸上截距最大時,z值最大,在y軸截距最小時,z值最??;當(dāng)時,直線過可行域且在y軸上截距最大時,z值最小,在y軸上截距最小時,z值最大.12、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角為鈍角.【詳解】設(shè)三邊分別為,,,中的最大角為,,為鈍角,為鈍角三角形.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,歸納總結(jié),結(jié)合等比數(shù)列的前項和公式,即可求得的通項公式.【詳解】結(jié)合已知條件,歸納總結(jié)如下:第一個圖案中,著色正方形的面積即;第二個圖案中,新著色的正方形面積是,故著色正方形的面積即;第三個圖案中,新著色的正方形面積是,故著色正方形的面積即;第個圖案中,新著色的正方形面積是,故著色正方形的面積即.故.故答案為:.14、【解析】根據(jù)題意,結(jié)合指數(shù)函數(shù)不等式,將原問題轉(zhuǎn)化為關(guān)于的不等式,對于任意恒成立,即可求解.【詳解】根據(jù)題意,知對于任意,恒成立,即,化簡得,令,,則恒成立,即,解得,故.故答案為:.15、【解析】由題意,,.故答案為.16、84【解析】設(shè)公比為q,求出,再由通項公式代入可得結(jié)論【詳解】設(shè)公比為q,則,解得所以故答案為:84三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)證明見解析【解析】(1)將已知條件用首項和公比表示,聯(lián)立方程組即可求解數(shù)列的通項公式,然后由對數(shù)的運算性質(zhì)即可得數(shù)列的通項公式;(2)由(1)求出,然后利用裂項相消求和法求出數(shù)列的前n項和,即可證明.【小問1詳解】解:設(shè)等比數(shù)列的公比為,由題意,得,即,解得或(舍),又,所以,所以,;【小問2詳解】解:,所以,所以18、(1)(2)證明見解析.(3)【解析】(1)由已知關(guān)系得出是等差數(shù)列及公差,然后可得通項公式;(2)由已知關(guān)系式,利用累加法證明對任意的,恒成立,即可得(3)由累加法求得通項公式,然后確定的奇數(shù)項和偶數(shù)項的單調(diào)性,得出數(shù)列的最大項和最小項,再利用已知范圍解得的范圍【小問1詳解】由已知,是等差數(shù)列,公差為6,所以;【小問2詳解】對任意的,恒成立,而恒成立,若,則,恒成立,同理若,也有恒成立,所以對任意的,恒成立,即是最小項;【小問3詳解】時,,所以,也適合此式所以,若,則,,,即,,若,由于,且是正負(fù)相間,因此無最大項也無最小項因此有,所以的奇數(shù)項數(shù)列是遞增數(shù)列,且,,的偶數(shù)項數(shù)列是遞減數(shù)列,且,,所以的最大值是,最小項是,,由,又,所以19、(1)證明見解析;(2).【解析】(1)過M作MN∥CD交PD于點N,證明四邊形ABMN為平行四邊形,即可證明BM∥平面PAD.(2)過B作AD的垂線,垂足為E,證明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱錐P-ADM的體積.【詳解】解:(1)證明:如圖,過M作MN∥CD交PD于點N,連接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四邊形ABMN為平行四邊形∴BM∥AN.又BM?平面PAD,AN?平面PAD∴BM∥平面PAD.(2)如圖,過B作AD的垂線,垂足為E.∵PD⊥平面ABCD,BE?平面ABCD∴PD⊥BE.又AD?平面PAD,PD?平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴點M到平面PAD的距離等于點B到平面PAD的距離,即BE.連接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=則三棱錐P-ADM的體積VP-ADM=VM-PAD=×S△PAD×BE=×3×=.20、(1)(2)在和內(nèi)為減函數(shù),在和內(nèi)為增函數(shù)【解析】(1)對求導(dǎo)得,因為在處取得極值,所以,即,解得;(2)由(1)得,,故,令,解得或,當(dāng)時,,故為減函數(shù),當(dāng)時,,故為增函數(shù),當(dāng)時,,故為減函數(shù),當(dāng)時,,故為增函數(shù),綜上所知:和是函數(shù)單調(diào)減區(qū)間,和是函數(shù)的單調(diào)增區(qū)間.21、(1)(2)(i)存在常數(shù),使得成立;(ii)的最大值為.【解析】(1)求點P的坐標(biāo),再利用面積和離心率,可以求出,然后就可以得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點的坐標(biāo)和直線方程,聯(lián)立方程,解出的y坐標(biāo)值與P的坐標(biāo)之間的關(guān)系,求以焦距為底邊的三角形面積;利用均值定理當(dāng)且僅當(dāng)時取等號,求最大值.【小問1詳解】先求第一象限P點坐標(biāo):,所以P點的坐標(biāo)為,所以,所以橢圓E的方程為【小問2詳解】設(shè),易知直線和直線的坐標(biāo)均不為零,因為,所以設(shè)直線的方程為,直線的方程為,由所以,因為,,所以所以同理由所以,因為,,所以所以,因為,,(i)所以所以存在常數(shù),使得成立.(ii),當(dāng)且僅當(dāng),時取等號,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論