天津市河西區(qū)實(shí)驗(yàn)中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第1頁
天津市河西區(qū)實(shí)驗(yàn)中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第2頁
天津市河西區(qū)實(shí)驗(yàn)中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第3頁
天津市河西區(qū)實(shí)驗(yàn)中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第4頁
天津市河西區(qū)實(shí)驗(yàn)中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

天津市河西區(qū)實(shí)驗(yàn)中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)P為橢圓C:上一點(diǎn),,分別為左、右焦點(diǎn),且,則()A. B.C. D.2.函數(shù)的最小值為()A. B.1C.2 D.e3.《米老鼠和唐老鴨》這部動(dòng)畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個(gè)圓構(gòu)成米奇的簡(jiǎn)筆畫形象.已知3個(gè)圓方程分別為:圓圓,圓若過原點(diǎn)的直線與圓、均相切,則截圓所得的弦長為()A B.C. D.4.已知雙曲線的左焦點(diǎn)為,,為雙曲線的左、右頂點(diǎn),漸近線上的一點(diǎn)滿足,且,則雙曲線的離心率為()A. B.C. D.5.函數(shù)在上是單調(diào)遞增函數(shù),則的最大值等于()A.2 B.3C.5 D.66.已知、為非零實(shí)數(shù),若且,則下列不等式成立的是()A. B.C. D.7.已知函數(shù),那么“”是“在上為增函數(shù)”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.過橢圓的左焦點(diǎn)作弦,則最短弦的長為()A. B.2C. D.49.設(shè)點(diǎn)P是雙曲線,與圓在第一象限的交點(diǎn),、分別是雙曲線的左、右焦點(diǎn),且,則此雙曲線的離心率為()A. B.C. D.310.設(shè)為等差數(shù)列的前項(xiàng)和,若,則的值為()A.14 B.28C.36 D.4811.雙曲線的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線上,下列結(jié)論不正確的是()A.該雙曲線的離心率為B.該雙曲線的漸近線方程為C.點(diǎn)P到兩漸近線的距離的乘積為D.若PF1⊥PF2,則△PF1F2的面積為3212.已知方程表示雙曲線,則實(shí)數(shù)的取值范圍是()A.或 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線上一點(diǎn)到其焦點(diǎn)的距離為,則的值為______14.已知圓和直線.(1)求直線l所經(jīng)過的定點(diǎn)的坐標(biāo),并判斷直線與圓的位置關(guān)系;(2)求當(dāng)k取什么值,直線被圓截得的弦最短,并求這條最短弦的長.15.橢圓的離心率是______16.已知直線與直線垂直,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且點(diǎn)的縱坐標(biāo)為4,(1)求拋物線的方程;(2)過點(diǎn)作直線交拋物線于兩點(diǎn),試問拋物線上是否存在定點(diǎn)使得直線與的斜率互為倒數(shù)?若存在求出點(diǎn)的坐標(biāo),若不存在說明理由18.(12分)已知圓的圓心為,且圓經(jīng)過點(diǎn)(1)求圓的標(biāo)準(zhǔn)方程;(2)若圓:與圓恰有兩條公切線,求實(shí)數(shù)取值范圍19.(12分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0交點(diǎn),且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標(biāo)準(zhǔn)方程20.(12分)已知正項(xiàng)數(shù)列的首項(xiàng)為,且滿足,(1)求證:數(shù)列為等比數(shù)列;(2)記,求數(shù)列的前n項(xiàng)和21.(12分)寫出下列命題的否定,并判斷它們的真假:(1):任意兩個(gè)等邊三角形都是相似的;(2):,.22.(10分)在等比數(shù)列中,是與的等比中項(xiàng),與的等差中項(xiàng)為6(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列前項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)橢圓的定義寫出,再根據(jù)條件即可解得答案.【詳解】根據(jù)P為橢圓C:上一點(diǎn),則有,又,所以,故選:B.2、B【解析】先化簡(jiǎn)為,然后通過換元,再研究外層函數(shù)單調(diào)性,進(jìn)而求得的最小值【詳解】化簡(jiǎn)可得:令,故的最小值即為的最小值,是關(guān)于的單調(diào)遞增函數(shù),易知對(duì)求導(dǎo)可得:當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增則有:故選:B3、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設(shè)過點(diǎn)的直線.由直線與圓、圓均相切,得解得(1).設(shè)點(diǎn)到直線的距離為則(2).又圓的半徑直線截圓所得弦長結(jié)合(1)(2)兩式,解得4、C【解析】由雙曲線的漸近線方程和兩點(diǎn)的距離公式,求得點(diǎn)的坐標(biāo)和,在中,利用余弦定理,求得的關(guān)系式,再由離心率公式,計(jì)算即可求解.【詳解】由題意,雙曲線,可得,設(shè)在漸近線上,且點(diǎn)在第一象限內(nèi),由,解得,即點(diǎn),所以,在中,由余弦定理可得,可得,即,所以雙曲線離心率為.故選:C.【點(diǎn)睛】求解橢圓或雙曲線的離心率的三種方法:1、定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過取特殊值或特殊位置,求出離心率.5、B【解析】由f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù),得到在[1,+∞)上,恒成立,從而解得a≤3,故a的最大值為3【詳解】解:∵f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù)∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)時(shí),3x2≥3恒成立,∴a≤3,∴a的最大值是3故選:B6、D【解析】作差法即可逐項(xiàng)判斷.【詳解】或,對(duì)于A:,∵,無法判斷正負(fù),故A錯(cuò)誤;對(duì)于B:,∵無法判斷正負(fù),故B錯(cuò)誤;對(duì)于C:,∵,,∴,,故C錯(cuò)誤;對(duì)于D:,∴,故D正確.故選:D.7、A【解析】對(duì)函數(shù)進(jìn)行求導(dǎo)得,進(jìn)而得時(shí),,在上為增函數(shù),然后判斷充分性和必要性即可.【詳解】解:因?yàn)榈亩x域是,所以,當(dāng)時(shí),,在上為增函數(shù).所以在上為增函數(shù),是充分條件;反之,在上為增函數(shù)或,不是必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,屬于中檔題.8、A【解析】求出橢圓的通徑,即可得到結(jié)果【詳解】過橢圓的左焦點(diǎn)作弦,則最短弦的長為橢圓的通徑:故選:A9、C【解析】根據(jù)幾何關(guān)系得到是直角三角形,然后由雙曲線的定義及勾股定理可求解.【詳解】點(diǎn)到原點(diǎn)的距離為,又因?yàn)樵谥?,,所以是直角三角形,?由雙曲線定義知,又因?yàn)?,所?在中,由勾股定理得,化簡(jiǎn)得,所以.故選:C.10、D【解析】利用等差數(shù)列的前項(xiàng)和公式以及等差數(shù)列的性質(zhì)即可求出.【詳解】因?yàn)闉榈炔顢?shù)列的前項(xiàng)和,所以故選:D【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和公式的計(jì)算以及等差數(shù)列性質(zhì)的應(yīng)用,屬于較易題.11、D【解析】根據(jù)雙曲線的離心率、漸近線、點(diǎn)到直線距離公式、三角形的面積等知識(shí)來確定正確答案.【詳解】由題意可知,a=3,b=4,c=5,,故離心率e,故A正確;由雙曲線的性質(zhì)可知,雙曲線線的漸近線方程為y=±x,故B正確;設(shè)P(x,y),則P到兩漸近線的距離之積為,故C正確;若PF1⊥PF2,則△PF1F2是直角三角形,由勾股定理得,由雙曲線的定義可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D錯(cuò)誤.故選:D12、A【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程的性質(zhì),列出關(guān)于不等式,求解即可得到答案【詳解】由雙曲線的性質(zhì):,解的或,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,利用拋物線的定義將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,再利用點(diǎn)到直線的距離公式進(jìn)行求解.【詳解】將拋物線化為,由拋物線定義得點(diǎn)到準(zhǔn)線的距離為,即,解得故答案為:.14、(1)直線過定點(diǎn)P(4,3),直線和圓總有兩個(gè)不同交點(diǎn)(2)k=1,【解析】(1)把直線方程化為點(diǎn)斜式方程即可;(2)由圓的性質(zhì)知,當(dāng)直線與PC垂直時(shí),弦長最短.【小問1詳解】直線方程可化為,則直線過定點(diǎn)P(4,3),又圓C標(biāo)準(zhǔn)方程為,圓心為,半徑為,而,所以點(diǎn)P在圓內(nèi),所以不論k取何值,直線和圓總有兩個(gè)不同交點(diǎn).【小問2詳解】由圓的性質(zhì)知,當(dāng)直線與PC垂直時(shí),弦長最短.,所以k=1時(shí)弦長最短.弦長為.15、【解析】求出、、的值,即可得出橢圓的離心率.【詳解】在橢圓中,,,,因此,橢圓的離心率是.故答案為:.16、-3【解析】因?yàn)橹本€與直線垂直,所以考點(diǎn):本題考查兩直線垂直的充要條件點(diǎn)評(píng):若兩直線方程分別為,則他們垂直的充要條件是三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】(1)利用拋物線的焦半徑公式求得點(diǎn)的橫坐標(biāo),進(jìn)而求得p,可得答案;(2)根據(jù)題意可設(shè)直線方程,和拋物線方程聯(lián)立,得到根與系數(shù)的關(guān)系式,利用直線與的斜率互為倒數(shù)列出等式,化簡(jiǎn)可得結(jié)論.【小問1詳解】(1)則,,,,故C的方程為:;【小問2詳解】假設(shè)存在定點(diǎn),使得直線與的斜率互為倒數(shù),由題意可知,直線AB的斜率存在,且不為零,,,,,所以Δ>0y1+即或,,,則,,使得直線與的斜率互為倒數(shù).18、(1);(2).【解析】(1)根據(jù)給定條件求出圓C的半徑,再直接寫出方程作答.(2)由給定條件可得圓C與圓O相交,由此列出不等式求解作答.【小問1詳解】依題意,圓C的半徑,所以圓的標(biāo)準(zhǔn)方程是:.【小問2詳解】圓:圓心,半徑為,因圓與圓恰有兩條公切線,則有圓O與圓C相交,即,而,因此有,解得,所以實(shí)數(shù)的取值范圍是.19、(1)(2)【解析】(1)先求得直線和直線的交點(diǎn)坐標(biāo),再用點(diǎn)斜式求得直線的方程.(2)設(shè)圓的標(biāo)準(zhǔn)方程為,根據(jù)已知條件列方程組,求得,由此求得圓的標(biāo)準(zhǔn)方程.【小問1詳解】.直線的斜率為,所以直線的斜率為,所以直線的方程為.【小問2詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,則,所以圓的標(biāo)準(zhǔn)方程為.20、(1)證明見解析(2)【解析】(1)由遞推關(guān)系式化簡(jiǎn)及等比數(shù)列的的定義證明即可;(2)根據(jù)裂項(xiàng)相消法求解即可得解.【小問1詳解】證明:由得,而且,則,即數(shù)列為首項(xiàng),公比為的等比數(shù)列【小問2詳解】由上可知,所以,21、(1)存在兩個(gè)等邊三角形不是相似的,假命題(2),真命題【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準(zhǔn)確改寫,即可求解.【小問1詳解】解:命題“任意兩個(gè)等邊三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論