版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆云南省河口縣民中高一上數(shù)學期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線,與平行,則的值是()A0或1 B.1或C.0或 D.2.直線(為實常數(shù))的傾斜角的大小是A B.C. D.3.命題:“,”的否定是()A., B.,C., D.,4.不等式的解集為()A.{x|1<x<4} B.{x|﹣1<x<4}C.{x|﹣4<x<1} D.{x|﹣1<x<3}5.若-4<x<1,則()A.有最小值1 B.有最大值1C.有最小值-1 D.有最大值-16.向量“,不共線”是“|+|<||+||”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知函數(shù)(,且)的圖象恒過點P,若角的終邊經(jīng)過點P,則()A. B.C. D.8.下列每組函數(shù)是同一函數(shù)的是()A. B.C. D.9.如圖,在等腰梯形中,,分別是底邊的中點,把四邊形沿直線折起使得平面平面.若動點平面,設與平面所成的角分別為(均不為0).若,則動點的軌跡圍成的圖形的面積為A. B.C. D.10.《九章算術》成書于公元一世紀,是中國古代乃至東方的第一部自成體系的數(shù)學專著.書中記載這樣一個問題“今有宛田,下周三十步,徑十六步.問為田幾何?”(一步=1.5米)意思是現(xiàn)有扇形田,弧長為45米,直徑為24米,那么扇形田的面積為A.135平方米 B.270平方米C.540平方米 D.1080平方米二、填空題:本大題共6小題,每小題5分,共30分。11.無論實數(shù)k取何值,直線kx-y+2+2k=0恒過定點__12.已知函數(shù)是定義在上的奇函數(shù),當時,,則__________.13.我國古代數(shù)學名著《九章算術》中將底面為矩形且有一側棱垂直于底面的四棱錐稱為“陽馬”,現(xiàn)有一“陽馬”如圖所示,平面,,,,則該“陽馬”外接球的表面積為________.14.已知冪函數(shù)的圖象過點,則________15.函數(shù)定義域為___________16.如圖,直四棱柱的底面是邊長為1的正方形,側棱長,則異面直線與的夾角大小等于______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知不等式.(1)求不等式的解集;(2)若當時,不等式總成立,求的取值范圍.18.已知函數(shù),(其中,,),的相鄰兩條對稱軸間的距離為,且圖象上一個最高點的坐標為.(Ⅰ)求的解析式;(Ⅱ)求的單調遞減區(qū)間;(Ⅲ)當時,求的值域.19.已知函數(shù).(1)當有是實數(shù)解時,求實數(shù)的取值范圍;(2)若,對一切恒成立,求實數(shù)的取值范圍.20.已知,.(1)求;(2)若角的終邊上有一點,求.21.假設你家訂了一份報紙,送報人可能在早上6點—8點之間把報紙送到你家,你每天離家去工作的時間在早上7點—9點之間.問:離家前不能看到報紙(稱事件)的概率是多少?(須有過程)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意得:或,故選C.考點:直線平行的充要條件2、D【解析】計算出直線的斜率,再結合傾斜角的取值范圍可求得該直線的傾斜角.【詳解】設直線傾斜角為,直線的斜率為,所以,,則.故選:D.【點睛】本題考查直線傾斜角的計算,一般要求出直線的斜率,考查計算能力,屬于基礎題.3、C【解析】根據(jù)含有一個量詞的命題的否定形式,全稱命題的否定是特稱命題,可得答案.【詳解】命題:“,”是全稱命題,它的否定是特稱命題:,,故選:C4、B【解析】把不等式化為,求出解集即可【詳解】解:不等式可化為,即,解得﹣1<x<4,所以不等式的解集為{x|﹣1<x<4}故選:B【點評】本題考查了一元二次不等式的解法,是基礎題5、D【解析】先將轉化為,根據(jù)-4<x<1,利用基本不等式求解.【詳解】又∵-4<x<1,∴x-1<0∴-(x-1)>0∴.當且僅當x-1=,即x=0時等號成立故選:D【點睛】本題主要考查基本不等式的應用,還考查了轉化求解問題的能力,屬于基礎題.6、A【解析】利用向量的線性運算的幾何表示及充分條件,必要條件的概念即得.【詳解】當向量“,不共線”時,由向量三角形的性質可得“|+|<||+||”成立,即充分性成立,當“,方向相反”時,滿足“|+|<||+||”,但此時兩個向量共線,即必要性不成立,故向量“,不共線”是“|+|<||+||”的充分不必要條件.故選:A.7、A【解析】由題可得點,再利用三角函數(shù)的定義即求.【詳解】令,則,所以函數(shù)(,且)的圖象恒過點,又角的終邊經(jīng)過點,所以,故選:A.8、C【解析】依次判斷每組函數(shù)的定義域和對應法則是否相同,可得選項.【詳解】A.的定義域為,的定義城為,定義域不同,故A錯誤;B.的定義域為,的定義域為,定義域不同,故B錯誤;C.與的定義域都為,,對應法則相同,故C正確;D.的定義域為,的定義域為,定義域不同,故D錯誤;故選:C【點睛】易錯點睛:本題考查判斷兩個函數(shù)是否是同一函數(shù),判斷時,注意考慮函數(shù)的定義域和對應法則是否完全相同,屬于基礎題.9、D【解析】由題意,PE=BEcotθ1,PF=CFcotθ2,∵BE=CF,θ1=θ2,∴PE=PF以EF所在直線為x軸,EF的垂直平分線為y軸建立坐標系,設E(﹣,0),F(xiàn)(,0),P(x,y),則(x+)2+y2=[(x﹣)2+y2],∴3x2+3y2+5ax+a2=0,即(x+a)2+y2=a2,軌跡為圓,面積為故答案選:D點睛:這個題考查的是立體幾何中點的軌跡問題,在求動點軌跡問題中常用的方法有:建立坐標系,將立體問題平面化,用方程的形式體現(xiàn)軌跡;或者根據(jù)幾何意義得到軌跡,但是注意得到軌跡后,一些特殊點是否需要去掉10、B【解析】直接利用扇形面積計算得到答案.【詳解】根據(jù)扇形的面積公式,計算扇形田的面積為Slr45270(平方米).故選:B.【點睛】本題考查了扇形面積,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由kx-y+2+2k=0,得(x+2)k+(2-y)=0,由此能求出無論實數(shù)k取何值,直線kx-y+2+2k=0恒過定點【詳解】∵kx-y+2+2k=0,∴(x+2)k+(2-y)=0,解方程組,得∴無論實數(shù)k取何值,直線kx-y+2+2k=0恒過定點故答案為:12、12【解析】由函數(shù)的奇偶性可知,代入函數(shù)解析式即可求出結果.【詳解】函數(shù)是定義在上的奇函數(shù),,則,.【點睛】本題主要考查函數(shù)的奇偶性,屬于基礎題型.13、【解析】以,,為棱作長方體,長方體的對角線即為外接球的直徑,從而求出外接球的半徑,進而求出外接球的表面積.【詳解】由題意,以,,為棱作長方體,長方體的對角線即為外接球的直徑,設外接球的半徑為,則故.故答案為:【點睛】本題考查了多面體外接球問題以及球的表面積公式,屬于中檔題.14、3【解析】先求得冪函數(shù)的解析式,再去求函數(shù)值即可.【詳解】設冪函數(shù),則,則,則,則故答案為:315、[0,1)【解析】要使函數(shù)有意義,需滿足,函數(shù)定義域為[0,1)考點:函數(shù)定義域16、【解析】由直四棱柱的底面是邊長為1的正方形,側棱長可得由知就是異面直線與的夾角,且所以=60°,即異面直線與的夾角大小等于60°.考點:1正四棱柱;2異面直線所成角三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用對數(shù)函數(shù)的單調性以及真數(shù)大于零得出關于實數(shù)的不等式組,解出即可;(2)令,利用參變量分離法得出,求出函數(shù)在區(qū)間上的最小值,即可得出實數(shù)的取值范圍.【詳解】(1)由已知可得:,因此,原不等式解集為;(2)令,則原問題等價,且,令,可得,當時,即當時,函數(shù)取得最小值,即,.因此,實數(shù)的取值范圍是.【點睛】本題考查對數(shù)不等式的求解,同時也考查了指數(shù)不等式恒成立問題,將問題在轉化為二次不等式在區(qū)間上恒成立是解題的關鍵,考查化歸與轉化思想的應用,屬于中等題.18、(1)(2)(3)【解析】(Ⅰ)由相鄰兩對稱軸間距離是半個周期可求得,再由最高點為可得A,;(Ⅱ)利用正弦函數(shù)的單調性,解不等式可得減區(qū)間;(Ⅲ)由已知求得,由正弦函數(shù)的性質可得值域試題解析:(Ⅰ)相鄰兩條對稱軸間距離為,,即,而由得,圖象上一個最高點坐標為,,,,,,.(Ⅱ)由,得,單調減區(qū)間為.(Ⅲ),,,的值域為.19、(1);(2)【解析】(1)由題意可知實數(shù)的取值范圍為函數(shù)的值域,結合三角函數(shù)的范圍和二次函數(shù)的性質可知時函數(shù)取得最小值,當時函數(shù)取得最大值,實數(shù)的取值范圍是.(2)由題意可得時函數(shù)取得最大值,當時函數(shù)取得最小值,原問題等價于,求解不等式組可得實數(shù)的取值范圍是.試題解析:(1)因為,可化得,若方程有解只需實數(shù)的取值范圍為函數(shù)的值域,而,又因為,當時函數(shù)取得最小值,當時函數(shù)取得最大值,故實數(shù)的取值范圍是.(2)由,當時函數(shù)取得最大值,當時函數(shù)取得最小值,故對一切恒成立只需,解得,所以實數(shù)的取值范圍是.點睛:二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個二次”,它們常結合在一起,有關二次函數(shù)的問題,數(shù)形結合,密切聯(lián)系圖象是探求解題思路的有效方法.一般從:①開口方向;②對稱軸位置;③判別式;④端點函數(shù)值符號四個方面分析.20、(1)(2)【解析】(1)由條件求得,將所求式展開計算(2)由條件求得與,再由二倍角與兩角和的正切公式計算小問1詳解】,,則故【小問2詳解】角終邊上一點,則由(1)可得,21、.【解析】設送報人到達的時間為X,小王離家去工作的時間為Y,(X,Y)可以看成平面中的點,試驗的全部結果所構成的區(qū)域為Ω={(x,y)|6≤X≤8,7≤Y≤9}一個正方形區(qū)域,求出其面積,事件A表示小王離家前不能看到報紙,所構成的區(qū)域為A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}
求出其面積,根據(jù)幾何概型的概率公式解之即可;試題解析:如圖,設送報人到達的時間為,小王離家去工作的時間為.(,)可以看成平面中的點,試驗的全部結果所構成的區(qū)域為一個正方形區(qū)域,面積為,事件表示小王離家前不能看到報紙,所構
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 老年糖尿病患者的個體化溝通方案
- 油制氫裝置操作工風險識別評優(yōu)考核試卷含答案
- 變壓器試驗工操作評估測試考核試卷含答案
- 高壓試驗工崗前決策判斷考核試卷含答案
- 膠印版材生產(chǎn)工崗前技術改進考核試卷含答案
- 脂肪醇胺化操作工發(fā)展趨勢競賽考核試卷含答案
- 棉花加工工崗前核心管理考核試卷含答案
- 玩具設計師崗前安全綜合考核試卷含答案
- 石作文物修復師創(chuàng)新思維能力考核試卷含答案
- 老年神經(jīng)外科手術麻醉風險評估工具
- 四川省攀枝花市2025-2026學年八年級上學期期末數(shù)學檢測(含答案)
- 2026年吉林大學附屬中學公開招聘教師備考題庫(4人)及參考答案詳解
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責任公司社會成熟人才招聘備考題庫參考答案詳解
- 2025年大學旅游管理(旅游服務質量管理)試題及答案
- 打捆機培訓課件
- 穿越機組裝教學課件
- GB/T 26332.3-2015光學和光子學光學薄膜第3部分:環(huán)境適應性
- GB/T 17626.4-2008電磁兼容試驗和測量技術電快速瞬變脈沖群抗擾度試驗
- GB/T 15153.1-1998遠動設備及系統(tǒng)第2部分:工作條件第1篇電源和電磁兼容性
- GB 22021-2008國家大地測量基本技術規(guī)定
- GA/T 1193-2014人身損害誤工期、護理期、營養(yǎng)期評定規(guī)范
評論
0/150
提交評論