版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省常州市常州中學(xué)2026屆數(shù)學(xué)高一上期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的部分圖像如圖所示,則該函數(shù)的解析式為()A. B.C. D.2.函數(shù)的單調(diào)減區(qū)間為()A. B.C. D.3.如圖,在矩形中,是兩條對角線的交點,則A. B.C. D.4.已知函數(shù)f(x)=a+log2(x2+a)(a>0)的最小值為8,則實數(shù)a的取值屬于以下哪個范圍()A.(5,6) B.(7,8)C.(8,9) D.(9,10)5.若冪函數(shù)的圖像經(jīng)過點,則A.1 B.2C.3 D.46.如果,,那么()A. B.C. D.7.函數(shù)在區(qū)間上的最大值是A.1 B.C. D.1+8.函數(shù)的最大值為()A. B.C.2 D.39.在平面直角坐標(biāo)系中,角以為始邊,終邊與單位圓交于點,則()A. B.C. D.10.若不等式對一切恒成立,那么實數(shù)的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知點在直線上,則的最小值為______12.如圖,若集合,,則圖中陰影部分表示的集合為___13.設(shè)函數(shù)是定義在上的奇函數(shù),且,則___________14.已知函數(shù)f(x)=lg(x2+2ax-5a)在[2,+∞)上是增函數(shù),則a的取值范圍為______15.已知角的終邊經(jīng)過點,則的值是______.16.已知函數(shù)f(x)=,設(shè)a∈R,若關(guān)于x的不等式f(x)在R上恒成立,則a的取值范圍是__三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)=(1)判斷的奇偶性;(2)求在的值域18.已知,函數(shù).(1)若有兩個零點,且的最小值為,當(dāng)時,判斷函數(shù)在上的單調(diào)性,并說明理由;(2)設(shè),記為集合中元素的最大者與最小者之差.若對,恒成立,求實數(shù)a的取值范圍.19.已知M(1,﹣1),N(2,2),P(3,0).(1)求點Q的坐標(biāo),滿足PQ⊥MN,PN∥MQ.(2)若點Q在x軸上,且∠NQP=∠NPQ,求直線MQ的傾斜角.20.已知函數(shù)(為常數(shù)且)的圖象經(jīng)過點,(1)試求的值;(2)若不等式在時恒成立,求實數(shù)的取值范圍.21.已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)若關(guān)于的方程有解,求的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由圖象確定以及周期,進(jìn)而得出,再由得出的值.【詳解】顯然因為,所以,所以由得所以,即,因為,所以所以.故選:A【點睛】本題主要考查了由函數(shù)圖象確定正弦型函數(shù)的解析式,屬于中檔題.2、A【解析】先求得函數(shù)的定義域,利用二次函數(shù)的性質(zhì)求得函數(shù)的單調(diào)區(qū)間,結(jié)合復(fù)合函數(shù)單調(diào)性的判定方法,即可求解.【詳解】由不等式,即,解得,即函數(shù)的定義域為,令,可得其圖象開口向下,對稱軸的方程為,當(dāng)時,函數(shù)單調(diào)遞增,又由函數(shù)在定義域上為單調(diào)遞減函數(shù),結(jié)合復(fù)合函數(shù)的單調(diào)性的判定方法,可得函數(shù)的單調(diào)減區(qū)間為.故選:A.3、B【解析】利用向量加減法的三角形法則即可求解.【詳解】原式=,答案為B.【點睛】主要考查向量的加減法運算,屬于基礎(chǔ)題.4、A【解析】根復(fù)合函數(shù)的單調(diào)性,得到函數(shù)f(x)的單調(diào)性,求解函數(shù)的最小值f(x)min=8,構(gòu)造新函數(shù)g(a)=a+log2a-8,利用零點的存在定理,即可求解.【詳解】由題意,根復(fù)合函數(shù)的單調(diào)性,可得函數(shù)f(x)在[0,+∞)上是增函數(shù),在(-∞,0)上遞減,所以函數(shù)f(x)的最小值f(x)min=f(0)=a+log2a=8,令g(a)=a+log2a-8,a>0,則g(5)=log25-3<0,g(6)=log26-2>0,又g(a)在(0,+∞)上是增函數(shù),所以實數(shù)a所在的區(qū)間為(5,6)【點睛】本題主要考查了函數(shù)的單調(diào)性的應(yīng)用,以及零點的存在定理的應(yīng)用,其中解答中根據(jù)復(fù)合函數(shù)的單調(diào)性,求得函數(shù)的最小值,構(gòu)造新函數(shù),利用零點的存在定理求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.5、B【解析】由題意可設(shè),將點代入可得,則,故選B.6、D【解析】根據(jù)不等式的性質(zhì),對四個選項進(jìn)行判斷,從而得到答案.【詳解】因為,所以,故A錯誤;因為,當(dāng)時,得,故B錯誤;因為,所以,故C錯誤;因為,所以,故D正確.故選:D.【點睛】本題考查不等式的性質(zhì),屬于簡單題.7、C【解析】由,故選C.8、B【解析】先利用,得;再用換元法結(jié)合二次函數(shù)求函數(shù)最值.【詳解】,,當(dāng)時取最大值,.故選:B【點睛】易錯點點睛:注意的限制條件.9、A【解析】根據(jù)任意角三角函數(shù)的概念可得出,然后利用誘導(dǎo)公式求解.【詳解】因為角以為始邊,且終邊與單位圓交于點,所以,則.故選:A.【點睛】當(dāng)以為始邊,已知角終邊上一點的坐標(biāo)為時,則,.10、D【解析】由絕對值不等式解法,分類討論去絕對值,再根據(jù)恒成立問題的解法即可求得a的取值范圍【詳解】根據(jù)絕對不等式,分類討論去絕對值,得所以所以所以選D【點睛】本題考查了絕對值不等式化簡方法,恒成立問題的基本應(yīng)用,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】由點在直線上得上,且表示點與原點的距離∴的最小值為原點到直線的距離,即∴的最小值為2故答案為2點睛:本題考查了數(shù)學(xué)的化歸與轉(zhuǎn)換能力,首先要知道一些式子的幾何意義,比如本題表示點和原點的兩點間距離,所以本題轉(zhuǎn)化為已知直線上的點到定點的距離的最小值,即定點到直線的距離最小.12、【解析】圖像陰影部分對應(yīng)的集合為,,故,故填.13、【解析】先由已知條件求出的函數(shù)關(guān)系式,也就是當(dāng)時的函數(shù)關(guān)系式,再求得,然后求的值即可【詳解】解:當(dāng)時,,∴,∵函數(shù)是定義在上的奇函數(shù),∴,∴,即由題意得,∴故答案為:【點睛】此題考查了分段函數(shù)求值,考查了奇函數(shù)的性質(zhì),屬于基礎(chǔ)題.14、【解析】利用對數(shù)函數(shù)的定義域以及二次函數(shù)的單調(diào)性,轉(zhuǎn)化求解即可【詳解】解:函數(shù)f(x)=lg(x2+2ax﹣5a)在[2,+∞)上是增函數(shù),可得:,解得a∈[﹣2,4)故答案為[﹣2,4)【點睛】本題考查復(fù)合函數(shù)的單調(diào)性的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力15、##【解析】根據(jù)三角函數(shù)定義得到,,進(jìn)而得到答案.【詳解】角的終邊經(jīng)過點,,,.故答案為:.16、﹣≤a≤2【解析】先求畫出函數(shù)的圖像,然后對的圖像進(jìn)行分類討論,使得的圖像在函數(shù)的圖像下方,由此求得的取值范圍.【詳解】畫出函數(shù)的圖像如下圖所示,而,是兩條射線組成,且零點為.將向左平移,直到和函數(shù)圖像相切的位置,聯(lián)立方程消去并化簡得,令判別式,解得.將向右平移,直到和函數(shù)圖像相切的位置,聯(lián)立方程消去并化簡得,令判別式,解得.根據(jù)圖像可知【點睛】本小題主要考查分段函數(shù)的圖像與性質(zhì),其中包括二次函數(shù)的圖像、對勾函數(shù)的圖像,以及含有絕對值函數(shù)的圖像,考查恒成立問題的求解方法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法以及分類討論的數(shù)學(xué)思想方法,屬于中檔題.形如函數(shù)的圖像,是引出的兩條射線.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)奇函數(shù)(2)【解析】(1)由奇偶性的定義判斷(2)由對數(shù)函數(shù)性質(zhì)求解【小問1詳解】,則,的定義域為,,故是奇函數(shù)【小問2詳解】,當(dāng)時,,故,即在的值域為18、(1)函數(shù)在區(qū)間上是單調(diào)遞減,理由見解析(2)【解析】(1)運用單調(diào)性的定義去判斷或者根據(jù)函數(shù)本身的性質(zhì)去判斷即可;(2)區(qū)間與二次函數(shù)的對稱軸比較,從而的情況中分類討論,而后得到的解析式,通過函數(shù)解析式求出最小值,再解不等式即可.【小問1詳解】方法1:因為,由題意得,即,所以時,即,所以,,對于任意設(shè),所以,因為,又,所以而,所以,所以,所以函數(shù)在區(qū)間上是單調(diào)遞減的.方法2:因為,由題意得,即,所以時,即,所以,,因為,所以函數(shù)圖像的對稱軸方程為,因為,所以,即,所以函數(shù)在上是單調(diào)遞減的.【小問2詳解】設(shè),,因為函數(shù)對稱軸為,①當(dāng)即時,在上單調(diào)遞減,,②當(dāng)即時,,③當(dāng)即時,,④當(dāng)即時,在上單調(diào)遞增,,綜上可得:可知在上單調(diào)遞減,在上單調(diào)遞增,所以最小值為,對,恒成立,只需即可,解得,所以a的取值范圍是.19、(1)(2)【解析】(1)設(shè)Q(x,y),根據(jù)PQ⊥MN得出,然后由PN∥MQ得出,解方程組即可求出Q的坐標(biāo);(2)設(shè)Q(x,0)由∠NQP=∠NPQ得出kNQ=﹣kNP,解方程求出Q的坐標(biāo),然后即可得出結(jié)果.【小問1詳解】設(shè)Q(x,y),由已知得kMN=3,又PQ⊥MN,可得kMN×kPQ=﹣1即(x≠3)①由已知得kPN=﹣2,又PN∥MQ,可得kPN=kMQ,即(x≠1)②聯(lián)立①②求解得x=0,y=1,∴Q(0,1);【小問2詳解】設(shè)Q(x,0),∵∠NQP=∠NPQ,∴kNQ=﹣kNP,又∵kNQ,kNP=﹣2,∴2解得x=1,∴Q(1,0),又∵M(jìn)(1,﹣1),∴MQ⊥x軸,故直線MQ的傾斜角為90°.20、(1);(2).【解析】(1)利用函數(shù)圖像上的兩個點的坐標(biāo)列方程組,解方程組求得的值.(2)將原不等式分離常數(shù),利用函數(shù)的單調(diào)性,求出的取值范圍.【詳解】(1)由于函數(shù)圖像經(jīng)過,,所以,解得,所以.(2)原不等式為,即在時恒成立,而在時單調(diào)遞減,故在時有最小值為,故.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 液糖化工安全培訓(xùn)知識考核試卷含答案
- 我國上市公司定向增發(fā)的法律問題剖析與完善路徑
- 聚丁烯裝置操作工崗前情緒管理考核試卷含答案
- 物料輸送及煙氣凈化工操作管理能力考核試卷含答案
- 印染成品定等工班組評比競賽考核試卷含答案
- 2026廣西柳州市事業(yè)單位公開考試招聘工作人員1111人備考題庫及完整答案詳解一套
- 煙機設(shè)備操作工班組評比評優(yōu)考核試卷含答案
- 印花電腦分色工安全文化測試考核試卷含答案
- 病蟲害防治工崗前班組考核考核試卷含答案
- 攝影基礎(chǔ)知識
- pvc地膠施工方案
- 河南省三門峽市2024-2025學(xué)年高二上學(xué)期期末調(diào)研考試英語試卷(含答案無聽力音頻及聽力原文)
- 睡眠科普課課件
- (正式版)DB15∕T 3227-2023 《集中供熱單位產(chǎn)品能耗限額》
- 蘇教版數(shù)學(xué)三年級上冊備課計劃
- 2025年中遠(yuǎn)海運集團(tuán)招聘筆試備考題庫(帶答案詳解)
- 大采高綜采工作面操作規(guī)程
- 保密車間出入管理制度
- 智能網(wǎng)聯(lián)汽車技術(shù)課件:車路協(xié)同控制
- 勞務(wù)派遣培訓(xùn)計劃方案
- 空氣能熱泵中央熱水系統(tǒng)調(diào)試
評論
0/150
提交評論