版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省長泰縣一中2026屆數(shù)學(xué)高二上期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓C過點,圓心在x軸上,則圓C的方程為()A. B.C. D.2.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.3.直線的傾斜角為()A.1 B.-1C. D.4.直線經(jīng)過兩點,那么其斜率為()A. B.C. D.5.若,都是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件6.設(shè)是周期為2的奇函數(shù),當(dāng)時,,則()A. B.C. D.7.橢圓的一個焦點坐標(biāo)為,則()A.2 B.3C.4 D.88.設(shè)拋物線的焦點為F,過點F且垂直于x軸的直線與拋物線C交于A,B兩點,若,則()A1 B.2C.4 D.89.拋物線的準(zhǔn)線方程是,則a的值為()A.4 B.C. D.10.已知長方體中,,,則平面與平面所成的銳二面角的余弦值為()A. B.C. D.11.函數(shù)的定義域是,,對任意,,則不等式的解集為()A. B.C.或 D.或12.函數(shù)單調(diào)減區(qū)間是()A. B.C.和 D.二、填空題:本題共4小題,每小題5分,共20分。13.若正數(shù)x、y滿足,則的最小值等于________.14.函數(shù)的單調(diào)遞減區(qū)間是____15.以正方體的對角線的交點為坐標(biāo)原點O建立右手系的空間直角坐標(biāo)系,其中,,,則點的坐標(biāo)為______16.已知三棱錐中,平面BCD,,,,則三棱錐的外接球的表面積為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當(dāng)時,已知是假命題,是真命題,求x的取值范圍.18.(12分)已知數(shù)列滿足(1)求;(2)若,且數(shù)列的前n項和為,求證:19.(12分)已知橢圓的焦點與雙曲線的焦點相同,且D的離心率為.(1)求C與D的方程;(2)若,直線與C交于A,B兩點,且直線PA,PB的斜率都存在.①求m的取值范圍.②試問這直線PA,PB的斜率之積是否為定值?若是,求出該定值;若不是,請說明理由.20.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,過點F且斜率大于0的直線交拋物線C于A,B兩點(其中A在B的上方),過線段AB的中點M且與x軸平行的直線依次交直線OA、OB,l于點P、Q、N(1)試探索PM與NQ長度的大小關(guān)系,并證明你的結(jié)論;(2)當(dāng)P、Q是線段MN的三等分點時,求直線AB的斜率;(3)當(dāng)P、Q不是線段MN的三等分點時,證明:以點Q為圓心、線段QO長為半徑的圓Q不可能包圍線段NP21.(12分)已知點A(0,-2),橢圓E:(a>b>0)的離心率為,F(xiàn)是橢圓E的右焦點,直線AF的斜率為,O為坐標(biāo)原點.(1)求E的方程;(2)設(shè)過點A的動直線l與E相交于P,Q兩點.當(dāng)△OPQ的面積最大時,求l的方程.22.(10分)已知直線:,直線:(1)若,之間的距離為3,求c的值:(2)求直線截圓C:所得弦長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)出圓的標(biāo)準(zhǔn)方程,將已知點的坐標(biāo)代入,解方程組即可.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,將坐標(biāo)代入得:,解得,故圓的方程為,故選:C.2、A【解析】根據(jù)雙曲線漸近線方程設(shè)出方程,再由其過的點即可求解.【詳解】漸近線方程是,設(shè)雙曲線方程為,又因為雙曲線經(jīng)過點,所以有,所以雙曲線方程為,化為標(biāo)準(zhǔn)方程為.故選:A3、C【解析】根據(jù)直線斜率的定義即可求解.【詳解】,斜率為1,則傾斜角為.故選:C.4、B【解析】由兩點的斜率公式可得答案.【詳解】直線經(jīng)過兩點,則故選:B5、A【解析】根據(jù)充分條件和必要條件的定義判斷即可得正確選項.【詳解】若,則,可得,所以,可得,故充分性成立,取,,滿足,但,無意義得不出,故必要性不成立,所以是的充分不必要條件,故選:A.6、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質(zhì)通過得結(jié)論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎(chǔ)題.此類題型,求函數(shù)值時,一般先用周期性化自變量到已知區(qū)間關(guān)于原點對稱的區(qū)間,然后再由奇函數(shù)性質(zhì)求得函數(shù)值7、D【解析】由條件可得,,,,由關(guān)系可求值.【詳解】∵橢圓方程為:,∴,∴,,∵橢圓的一個焦點坐標(biāo)為,∴,又,∴,∴,故選:D.8、C【解析】根據(jù)焦點弦的性質(zhì)即可求出【詳解】依題可知,,所以故選:C9、C【解析】先求得拋物線的標(biāo)準(zhǔn)方程,可得其準(zhǔn)線方程,根據(jù)題意,列出方程,即可得答案.【詳解】由題意得拋物線的標(biāo)準(zhǔn)方程為,準(zhǔn)線方程為,又準(zhǔn)線方程是,所以,所以.故選:C10、A【解析】建立空間直角坐標(biāo)系,求得平面的一個法向量為,易知平面的一個法向量為,由求解.【詳解】建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面的一個法向量為,則,即,令,則,易知平面的一個法向量為,所以,所以平面與平面所成的銳二面角的余弦值為,故選:A11、A【解析】構(gòu)造函數(shù),結(jié)合已知條件可得恒成立,可得為上的減函數(shù),再由,從而將不等式轉(zhuǎn)換為,根據(jù)單調(diào)性即可求解.【詳解】構(gòu)造函數(shù),因為,所以為上的增函數(shù)又因為,所以原不等式轉(zhuǎn)化為,即,解得.所以原不等式的解集為,故選:A.12、B【解析】根據(jù)函數(shù)求導(dǎo),然后由求解.【詳解】因為函數(shù),所以,由,解得,所以函數(shù)的單調(diào)遞減區(qū)間是,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】把要求的式子變形為,利用基本不等式即可得結(jié)果.【詳解】因為,所以,當(dāng)且僅當(dāng)時取等號,故答案為.【點睛】本題主要考查利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內(nèi),二是多次用或時等號能否同時成立).14、【解析】求導(dǎo),根據(jù)可得答案.【詳解】由題意,可得,令,即,解得,即函數(shù)的遞減區(qū)間為.故答案為:.【點睛】本題考查運(yùn)用導(dǎo)函數(shù)的符號,研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.15、【解析】根據(jù)已知點的坐標(biāo),確定出坐標(biāo)系即可得【詳解】如圖,由已知得坐標(biāo)系如圖所示,軸過正方形的對角線交點,軸過中點,軸過中點,因此可知坐標(biāo)為故答案為:16、【解析】由題意可知三棱錐的外接球即為三棱柱的外接球,進(jìn)而求出三棱柱的外接球的半徑即可得出結(jié)果.【詳解】因為,,所以,故,又因為平面BCD,因此三棱錐的外接球即為三棱柱的外接球,如圖:取的中點,則為外接圓的圓心,取的中點,則為外接圓的圓心,則的中點即為外接球的球心,因此,,因此,所以三棱錐的外接球的表面積為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)解不等式組即得解;(2)由題得p、q一真一假,分兩種情況討論得解.【小問1詳解】解:由題意知p是q的充分條件,即p集合包含于q集合,有;【小問2詳解】解:當(dāng)時,有,由題意知,p、q一真一假,當(dāng)p真q假時,,當(dāng)p假q真時,,綜上,x的取值范圍為18、(1)(2)證明見解析【解析】(1)先求得,猜想,然后利用數(shù)學(xué)歸納法進(jìn)行證明.(2)利用放縮法證得結(jié)論成立.【小問1詳解】依題意,,,,猜想,下面用數(shù)學(xué)歸納法進(jìn)行證明:當(dāng)時,結(jié)論成立,假設(shè)當(dāng)時結(jié)論成立,即,由,,所以當(dāng)時,有,結(jié)論成立,所以當(dāng)時,.【小問2詳解】由(1)得,且為單調(diào)遞增數(shù)列,所以.所以.19、(1)C:;D:;(2)①且;②見解析.【解析】(1)根據(jù)D的離心率為,求出從而求出雙曲線的焦點,再由橢圓的焦點與雙曲線的焦點相同,即可求出,即可求出C與D的方程;(2)①根據(jù)題意容易得出,然后聯(lián)立方程,消元,利用即可求出m的取值范圍;②設(shè),由①得:,計算出,判斷其是否為定值即可.【詳解】解:(1)因為D的離心率為,即,解得:,所以D的方程為:;焦點坐標(biāo)為,又因橢圓的焦點與雙曲線的焦點相同,所以,所以,所以C的方程為:;(2)①如圖:因為直線與C交于A,B兩點,且直線PA,PB的斜率都存在,所以,聯(lián)立,消化簡得:,所以,解得,所以且;②設(shè),由①得:,,所以,故直線PA,PB的斜率之積不是是定值.【點睛】本題考查了求橢圓與雙曲線的方程、直線與橢圓的位置關(guān)系及橢圓中跟定直有關(guān)的問題,難度較大.20、(1),證明見解析(2)(3)證明見解析【解析】(1)根據(jù)已知條件設(shè)出直線方程及,與拋物線的方程聯(lián)立,利用韋達(dá)定理和中點坐標(biāo)公式,三點共線的性質(zhì)即可求解;(2)根據(jù)已知條件得出,運(yùn)用韋達(dá)定理和弦長公式,可得出直線的斜率;(3)根據(jù)(1)的結(jié)論及求根公式,求得點的坐標(biāo),結(jié)合的表達(dá)式,結(jié)合圖形可知,由的范圍和的取值即可證明.【小問1詳解】由題意可知,拋物線的焦點為,設(shè)直線的方程為,則,消去,得,,,所以直線的方程為,由因為三點共線,所以,,同理,,,所以,所以.【小問2詳解】因為P、Q是線段MN的三等分點,所以,,,又,,所以,所以,解得或(舍)所以直線AB的斜率為.【小問3詳解】由(1)知,,得,所以,,又,,,,當(dāng)時,,由圖可知,,而只要,就有,所以當(dāng)P、Q不是線段MN的三等分點時,以點Q為圓心、線段QO長為半徑的圓Q不可能包圍線段NP21、(1)(2)【解析】設(shè)出,由直線的斜率為求得,結(jié)合離心率求得,再由隱含條件求得,即可求橢圓方程;(2)點軸時,不合題意;當(dāng)直線斜率存在時,設(shè)直線,聯(lián)立直線方程和橢圓方程,由判別式大于零求得的范圍,再由弦長公式求得,由點到直線的距離公式求得到的距離,代入三角形面積公式,化簡后換元,利用基本不等式求得最值,進(jìn)一步求出值,則直線方程可求.試題解析:(1)設(shè),因為直線的斜率為,所以,.又解得,所以橢圓的方程為.(2)解:設(shè)由題意可設(shè)直線的方程為:,聯(lián)立消去得,當(dāng),所以,即或時.所以點到直線的距離所以,設(shè),則,,當(dāng)且僅當(dāng),即,解得時取等號,滿足所以的面積最大時直線的方程為:或.【方法點晴】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年新疆烏魯木齊高三高考一模英語試卷試題(含答案詳解)
- 供應(yīng)鏈總監(jiān)應(yīng)對原料供應(yīng)風(fēng)險
- 供應(yīng)鏈總監(jiān)協(xié)調(diào)生產(chǎn)物流
- 2026年醫(yī)學(xué)基礎(chǔ)知識與應(yīng)用題集解析
- 2026年計算機(jī)二級考試C語言程序設(shè)計重難點題目詳解
- 2026年航空航天器突發(fā)情況快速反應(yīng)及應(yīng)急處置知識測試
- 2026年環(huán)境科學(xué)與保護(hù)知識理解測試題
- 2026年藝術(shù)生創(chuàng)作焦慮與心理壓力疏導(dǎo)方法模擬題
- 2026年食品科學(xué)與技術(shù)測試題探索食材變質(zhì)的科學(xué)原理與解決方法
- 貴州企業(yè)招聘2025貴州省農(nóng)業(yè)信貸融資擔(dān)保股份有限公司招聘20人筆試參考題庫附帶答案詳解
- 2026屆廣東省江門市普通高中化學(xué)高二第一學(xué)期期末調(diào)研模擬試題含答案
- 園林綠化施工工藝及注意事項
- 2025年高中語文必修上冊《登泰山記》文言文對比閱讀訓(xùn)練(含答案)
- 2025年金蝶AI蒼穹平臺新一代企業(yè)級AI平臺報告-
- 2026屆山東菏澤一中高三化學(xué)第一學(xué)期期末達(dá)標(biāo)測試試題含解析
- 2025中國機(jī)械工業(yè)集團(tuán)有限公司(國機(jī)集團(tuán))社會招聘19人筆試參考題庫附答案
- 二年級上冊100以內(nèi)的數(shù)學(xué)加減混合口算題500道-A4直接打印
- 2025年二級造價師《土建工程實務(wù)》真題卷(附解析)
- 智慧農(nóng)業(yè)管理中的信息安全對策
- 港口安全生產(chǎn)知識培訓(xùn)課件
- 通信凝凍期間安全培訓(xùn)課件
評論
0/150
提交評論