2024-2025學(xué)年西藏昌都地區(qū)邊壩縣中考數(shù)學(xué)全真模擬試題含解析_第1頁(yè)
2024-2025學(xué)年西藏昌都地區(qū)邊壩縣中考數(shù)學(xué)全真模擬試題含解析_第2頁(yè)
2024-2025學(xué)年西藏昌都地區(qū)邊壩縣中考數(shù)學(xué)全真模擬試題含解析_第3頁(yè)
2024-2025學(xué)年西藏昌都地區(qū)邊壩縣中考數(shù)學(xué)全真模擬試題含解析_第4頁(yè)
2024-2025學(xué)年西藏昌都地區(qū)邊壩縣中考數(shù)學(xué)全真模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024-2025學(xué)年西藏昌都地區(qū)邊壩縣中考數(shù)學(xué)全真模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.下圖是某幾何體的三視圖,則這個(gè)幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐2.如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為()A.75° B.60° C.55° D.45°3.若點(diǎn)A(a,b),B(,c)都在反比例函數(shù)y=的圖象上,且﹣1<c<0,則一次函數(shù)y=(b﹣c)x+ac的大致圖象是()A. B.C. D.4.如圖,將邊長(zhǎng)為2cm的正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),點(diǎn)A的橫坐標(biāo)為1,則點(diǎn)C的坐標(biāo)為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)5.據(jù)史料記載,雎水太平橋建于清嘉慶年間,已有200余年歷史.橋身為一巨型單孔圓弧,既沒有用鋼筋,也沒有用水泥,全部由石塊砌成,猶如一道彩虹橫臥河面上,橋拱半徑OC為13m,河面寬AB為24m,則橋高CD為()A.15m B.17m C.18m D.20m6.小明在一次登山活動(dòng)中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測(cè)量出這塊礦石的體積.如果他量出玻璃杯的內(nèi)直徑d,把礦石完全浸沒在水中,測(cè)出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.7.我國(guó)古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載”繩索量竿”問題:“一條竿子一條索,索比竿子長(zhǎng)一托.折回索子卻量竿,卻比竿子短一托“其大意為:現(xiàn)有一根竿和一條繩索,用繩索去量竿,繩索比竿長(zhǎng)5尺;如果將繩索對(duì)半折后再去量竿,就比竿短5尺.設(shè)繩索長(zhǎng)x尺,竿長(zhǎng)y尺,則符合題意的方程組是()A. B. C. D.8.3點(diǎn)40分,時(shí)鐘的時(shí)針與分針的夾角為()A.140° B.130° C.120° D.110°9.有兩把不同的鎖和三把鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,第三把鑰匙不能打開這兩把鎖,任意取出一把鑰匙去開任意的一把鎖,一次打開鎖的概率是()A. B. C. D.10.如圖,直立于地面上的電線桿AB,在陽(yáng)光下落在水平地面和坡面上的影子分別是BC、CD,測(cè)得BC=6米,CD=4米,∠BCD=150°,在D處測(cè)得電線桿頂端A的仰角為30°,則電線桿AB的高度為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.今年我市初中畢業(yè)暨升學(xué)統(tǒng)一考試的考生約有35300人,該數(shù)據(jù)用科學(xué)記數(shù)法表示為________人.12.如圖,MN是⊙O的直徑,MN=4,∠AMN=40°,點(diǎn)B為弧AN的中點(diǎn),點(diǎn)P是直徑MN上的一個(gè)動(dòng)點(diǎn),則PA+PB的最小值為_____.13.的算術(shù)平方根為______.14.計(jì)算:2﹣1+=_____.15.已知線段厘米,厘米,線段c是線段a和線段b的比例中項(xiàng),線段c的長(zhǎng)度等于________厘米.16.如圖,AB是半圓O的直徑,點(diǎn)C、D是半圓O的三等分點(diǎn),若弦CD=2,則圖中陰影部分的面積為.17.因式分解:______.三、解答題(共7小題,滿分69分)18.(10分)如今,旅游度假成為了中國(guó)人慶祝傳統(tǒng)春節(jié)的一項(xiàng)的“新年俗”,山西省旅發(fā)委發(fā)布的《2018年“春節(jié)”假日旅游市場(chǎng)總結(jié)分析報(bào)告》中稱:山西春節(jié)旅游供需兩旺,實(shí)現(xiàn)了“旅游接待”與“經(jīng)濟(jì)效益”的雙豐收,請(qǐng)根據(jù)圖表信息解決問題:(1)如圖1所示,山西近五年春節(jié)假日接待海內(nèi)外游客的數(shù)量逐年增加,2018年首次突破了“千萬”大關(guān),達(dá)到萬人次,比2017年春節(jié)假日增加萬人次.(2)2018年2月15日﹣20日期間,山西省35個(gè)重點(diǎn)景區(qū)每日接待游客數(shù)量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客數(shù)量(萬人次)7.5682.83119.5184.38103.2151.55這組數(shù)據(jù)的中位數(shù)是萬人次.(3)根據(jù)圖2中的信息預(yù)估:2019年春節(jié)假日山西旅游總收入比2018年同期增長(zhǎng)的百分率約為,理由是.(4)春節(jié)期間,小明在“青龍古鎮(zhèn)第一屆新春廟會(huì)”上購(gòu)買了A,B,C,D四枚書簽(除圖案外完全相同).正面分別印有“剪紙藝術(shù)”、“國(guó)粹京劇”、“陶瓷藝術(shù)”、“皮影戲”的圖案(如圖3),他將書簽背面朝上放在桌面上,從中隨機(jī)挑選兩枚送給好朋友,求送給好朋友的兩枚書簽中恰好有“剪紙藝術(shù)”的概率.19.(5分)在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)B的坐標(biāo)為(0,4),BC平分∠ABO交x軸于點(diǎn)C(2,0).點(diǎn)P是線段AB上一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),過點(diǎn)P作AB的垂線分別與x軸交于點(diǎn)D,與y軸交于點(diǎn)E,DF平分∠PDO交y軸于點(diǎn)F.設(shè)點(diǎn)D的橫坐標(biāo)為t.(1)如圖1,當(dāng)0<t<2時(shí),求證:DF∥CB;(2)當(dāng)t<0時(shí),在圖2中補(bǔ)全圖形,判斷直線DF與CB的位置關(guān)系,并證明你的結(jié)論;(3)若點(diǎn)M的坐標(biāo)為(4,-1),在點(diǎn)P運(yùn)動(dòng)的過程中,當(dāng)△MCE的面積等于△BCO面積的倍時(shí),直接寫出此時(shí)點(diǎn)E的坐標(biāo).20.(8分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.(1)如圖1,已知折痕與邊BC交于點(diǎn)O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng).(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P、A重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問動(dòng)點(diǎn)M、N在移動(dòng)的過程中,線段EF的長(zhǎng)度是否發(fā)生變化?若不變,求出線段EF的長(zhǎng)度;若變化,說明理由.21.(10分)如圖,在平面直角坐標(biāo)系中,直線y=x+4與x軸、y軸分別交于A、B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),并與x軸交于另一點(diǎn)C(點(diǎn)C點(diǎn)A的右側(cè)),點(diǎn)P是拋物線上一動(dòng)點(diǎn).(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);(2)若點(diǎn)P在第二象限內(nèi),過點(diǎn)P作PD⊥軸于D,交AB于點(diǎn)E.當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),線段PE最長(zhǎng)?此時(shí)PE等于多少?(3)如果平行于x軸的動(dòng)直線l與拋物線交于點(diǎn)Q,與直線AB交于點(diǎn)N,點(diǎn)M為OA的中點(diǎn),那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.22.(10分)為做好防汛工作,防汛指揮部決定對(duì)某水庫(kù)的水壩進(jìn)行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)為給誕辰周年獻(xiàn)禮,廣安市政府對(duì)城市建設(shè)進(jìn)行了整改,如圖所示,已知斜坡長(zhǎng)60米,坡角(即)為,,現(xiàn)計(jì)劃在斜坡中點(diǎn)處挖去部分斜坡,修建一個(gè)平行于水平線的休閑平臺(tái)和一條新的斜坡(下面兩個(gè)小題結(jié)果都保留根號(hào)).若修建的斜坡BE的坡比為:1,求休閑平臺(tái)的長(zhǎng)是多少米?一座建筑物距離點(diǎn)米遠(yuǎn)(即米),小亮在點(diǎn)測(cè)得建筑物頂部的仰角(即)為.點(diǎn)、、、,在同一個(gè)平面內(nèi),點(diǎn)、、在同一條直線上,且,問建筑物高為多少米?24.(14分)在直角坐標(biāo)系中,過原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點(diǎn)D為OB的中點(diǎn),點(diǎn)E是線段AB上的動(dòng)點(diǎn),連結(jié)DE,作DF⊥DE,交OA于點(diǎn)F,連結(jié)EF.已知點(diǎn)E從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.如圖1,當(dāng)t=3時(shí),求DF的長(zhǎng).如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請(qǐng)說明理由;如果不變,請(qǐng)求出tan∠DEF的值.連結(jié)AD,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時(shí),求相應(yīng)的t的值.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂?shù)膱A心,符合題意的只有圓錐.故選D.本題考查由三視圖確定幾何體的形狀,主要考查學(xué)生空間想象能力以及對(duì)立體圖形的認(rèn)識(shí).2、B【解析】

由正方形的性質(zhì)和等邊三角形的性質(zhì)得出∠BAE=150°,AB=AE,由等腰三角形的性質(zhì)和內(nèi)角和定理得出∠ABE=∠AEB=15°,再運(yùn)用三角形的外角性質(zhì)即可得出結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.本題考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、三角形的外角性質(zhì);熟練掌握正方形和等邊三角形的性質(zhì),并能進(jìn)行推理計(jì)算是解決問題的關(guān)鍵.3、D【解析】

將,代入,得,,然后分析與的正負(fù),即可得到的大致圖象.【詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號(hào).∴.又∵,故選D.本題考查了反比例函數(shù)圖像上點(diǎn)的坐標(biāo)特征,一次函數(shù)的圖像與性質(zhì),得出與的正負(fù)是解答本題的關(guān)鍵.4、A【解析】

作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質(zhì)得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結(jié)果.【詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點(diǎn)A的坐標(biāo)為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點(diǎn)C的坐標(biāo)為(,﹣1).故選A.本題考查了正方形的性質(zhì)、坐標(biāo)與圖形性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等得出對(duì)應(yīng)邊相等是解決問題的關(guān)鍵.5、C【解析】連結(jié)OA,如圖所示:

∵CD⊥AB,

∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故選C.6、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.7、A【解析】

設(shè)索長(zhǎng)為x尺,竿子長(zhǎng)為y尺,根據(jù)“索比竿子長(zhǎng)一托,折回索子卻量竿,卻比竿子短一托”,即可得出關(guān)于x、y的二元一次方程組.【詳解】設(shè)索長(zhǎng)為x尺,竿子長(zhǎng)為y尺,根據(jù)題意得:.故選A.本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.8、B【解析】

根據(jù)時(shí)針與分針相距的份數(shù)乘以每份的度數(shù),可得答案.【詳解】解:3點(diǎn)40分時(shí)針與分針相距4+=份,30°×=130,故選B.本題考查了鐘面角,確定時(shí)針與分針相距的份數(shù)是解題關(guān)鍵.9、B【解析】解:將兩把不同的鎖分別用A與B表示,三把鑰匙分別用A,B與C表示,且A鑰匙能打開A鎖,B鑰匙能打開B鎖,畫樹狀圖得:∵共有6種等可能的結(jié)果,一次打開鎖的有2種情況,∴一次打開鎖的概率為:.故選B.點(diǎn)睛:本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.10、B【解析】

延長(zhǎng)AD交BC的延長(zhǎng)線于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由題意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即電線桿的高度為(2+4)米.點(diǎn)睛:本題考查的是解直角三角形的應(yīng)用-仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、3.53×104【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù),35300=3.53×104,故答案為:3.53×104.12、2【解析】

過A作關(guān)于直線MN的對(duì)稱點(diǎn)A′,連接A′B,由軸對(duì)稱的性質(zhì)可知A′B即為PA+PB的最小值,【詳解】解:連接OB,OA′,AA′,∵AA′關(guān)于直線MN對(duì)稱,∴∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,過O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,

∴A′B=2A′Q=即PA+PB的最小值.本題考查軸對(duì)稱求最小值問題及解直角三角形,根據(jù)軸對(duì)稱的性質(zhì)準(zhǔn)確作圖是本題的解題關(guān)鍵.13、【解析】

首先根據(jù)算術(shù)平方根的定義計(jì)算先=2,再求2的算術(shù)平方根即可.【詳解】∵=2,∴的算術(shù)平方根為.本題考查了算術(shù)平方根,屬于簡(jiǎn)單題,熟悉算數(shù)平方根的概念是解題關(guān)鍵.14、【解析】根據(jù)負(fù)整指數(shù)冪的性質(zhì)和二次根式的性質(zhì),可知=.故答案為.15、1【解析】

根據(jù)比例中項(xiàng)的定義,列出比例式即可得出中項(xiàng),注意線段不能為負(fù).【詳解】∵線段c是線段a和線段b的比例中項(xiàng),∴,解得(線段是正數(shù),負(fù)值舍去),∴,故答案為:1.本題考查比例線段、比例中項(xiàng)等知識(shí),比例中項(xiàng)的平方等于兩條線段的乘積,熟練掌握基本概念是解題關(guān)鍵.16、.【解析】試題分析:連結(jié)OC、OD,因?yàn)镃、D是半圓O的三等分點(diǎn),所以,∠BOD=∠COD=60°,所以,三角形OCD為等邊三角形,所以,半圓O的半徑為OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以陰影部分的面積為為S=--()=.考點(diǎn):扇形的面積計(jì)算.17、【解析】

先提取公因式x,再對(duì)余下的多項(xiàng)式利用完全平方公式繼續(xù)分解.【詳解】xy1+1xy+x,=x(y1+1y+1),=x(y+1)1.故答案為:x(y+1)1.本題考查了用提公因式法和公式法進(jìn)行因式分解,一個(gè)多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時(shí)因式分解要徹底,直到不能分解為止.三、解答題(共7小題,滿分69分)18、(1)1365.45、414.4(2)93.79(3)30%;近3年平均漲幅在30%左右,估計(jì)2019年比2018年同比增長(zhǎng)約30%(4)【解析】

(1)由圖1可得答案;(2)根據(jù)中位數(shù)的定義求解可得;(3)由近3年平均漲幅在30%左右即可做出估計(jì);(4)根據(jù)題意先畫出樹狀圖,得出共有12種等可能的結(jié)果數(shù),再利用概率公式求解可得.【詳解】(1)2018年首次突破了“千萬”大關(guān),達(dá)到1365.45萬人次,比2017年春節(jié)假日增加1365.45﹣951.05=414.4萬人次.故答案為:1365.45、414.4;(2)這組數(shù)據(jù)的中位數(shù)是=93.79萬人次,故答案為:93.79;(3)2019年春節(jié)假日山西旅游總收入比2018年同期增長(zhǎng)的百分率約為30%,理由是:近3年平均漲幅在30%左右,估計(jì)2019年比2018年同比增長(zhǎng)約30%,故答案為:30%;近3年平均漲幅在30%左右,估計(jì)2019年比2018年同比增長(zhǎng)約30%.(4)畫樹狀圖如下:則共有12種等可能的結(jié)果數(shù),其中送給好朋友的兩枚書簽中恰好有“剪紙藝術(shù)”的結(jié)果數(shù)為6,所以送給好朋友的兩枚書簽中恰好有“剪紙藝術(shù)”的概率為.本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結(jié)果求出n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,求出概率,也考查了條形統(tǒng)計(jì)圖與樣本估計(jì)總體.19、(1)詳見解析;(2)詳見解析;(3)詳見解析.【解析】

(1)求出∠PBO+∠PDO=180°,根據(jù)角平分線定義得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根據(jù)平行線的性質(zhì)得出即可;

(2)求出∠ABO=∠PDA,根據(jù)角平分線定義得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根據(jù)垂直定義得出即可;

(3)分為兩種情況:根據(jù)三角形面積公式求出即可.【詳解】(1)證明:如圖1.

∵在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)B的坐標(biāo)為(0,4),

∴∠AOB=90°.

∵DP⊥AB于點(diǎn)P,

∴∠DPB=90°,

∵在四邊形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,

∴∠PBO+∠PDO=180°,

∵BC平分∠ABO,DF平分∠PDO,

∴∠CBO=∠PBO,∠ODF=∠PDO,

∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,

∵在△FDO中,∠OFD+∠ODF=90°,

∴∠CBO=∠DFO,

∴DF∥CB.

(2)直線DF與CB的位置關(guān)系是:DF⊥CB,

證明:延長(zhǎng)DF交CB于點(diǎn)Q,如圖2,

∵在△ABO中,∠AOB=90°,

∴∠BAO+∠ABO=90°,

∵在△APD中,∠APD=90°,

∴∠PAD+∠PDA=90°,

∴∠ABO=∠PDA,

∵BC平分∠ABO,DF平分∠PDO,

∴∠CBO=∠ABO,∠CDQ=∠PDO,

∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,

∴∠CDQ+∠DCQ=90°,

∴在△QCD中,∠CQD=90°,

∴DF⊥CB.

(3)解:過M作MN⊥y軸于N,

∵M(jìn)(4,-1),

∴MN=4,ON=1,

當(dāng)E在y軸的正半軸上時(shí),如圖3,

∵△MCE的面積等于△BCO面積的倍時(shí),

∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,

解得:OE=,

當(dāng)E在y軸的負(fù)半軸上時(shí),如圖4,

×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,

解得:OE=,

即E的坐標(biāo)是(0,)或(0,-).本題考查了平行線的性質(zhì)和判定,三角形內(nèi)角和定理,坐標(biāo)與圖形性質(zhì),三角形的面積的應(yīng)用,題目綜合性比較強(qiáng),有一定的難度.20、(1)①證明見解析;②10;(2)線段EF的長(zhǎng)度不變,它的長(zhǎng)度為25..【解析】試題分析:(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=12(2)作MQ∥AN,交PB于點(diǎn)Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=12PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=12QB,再求出EF=12試題解析:(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴OPPA=CPDA=14(2)作MQ∥AN,交PB于點(diǎn)Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵M(jìn)P=MQ,ME⊥PQ,∴EQ=12PQ.∵M(jìn)Q∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=82+42考點(diǎn):翻折變換(折疊問題);矩形的性質(zhì);相似形綜合題.21、(1)y=-x2-2x+1,C(1,0)(2)當(dāng)t=-2時(shí),線段PE的長(zhǎng)度有最大值1,此時(shí)P(-2,6)(2)存在這樣的直線l,使得△MON為等腰三角形.所求Q點(diǎn)的坐標(biāo)為(,2)或(,2)或(,2)或(,2)【解析】解:(1)∵直線y=x+1與x軸、y軸分別交于A、B兩點(diǎn),∴A(-1,0),B(0,1).∵拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),∴,解得.∴拋物線解析式為y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如圖1,設(shè)D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴當(dāng)t=-2時(shí),線段PE的長(zhǎng)度有最大值1,此時(shí)P(-2,6).(2)存在.如圖2,過N點(diǎn)作NH⊥x軸于點(diǎn)H.設(shè)OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴yQ=1-m.又M為OA中點(diǎn),∴MH=2-m.當(dāng)△MON為等腰三角形時(shí):①若MN=ON,則H為底邊OM的中點(diǎn),∴m=1,∴yQ=1-m=2.由-xQ2-2xQ+1=2,解得.∴點(diǎn)Q坐標(biāo)為(,2)或(,2).②若MN=OM=2,則在Rt△MNH中,根據(jù)勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,化簡(jiǎn)得m2-6m+8=0,解得:m1=2,m2=1(不合題意,舍去).∴yQ=2,由-xQ2-2xQ+1=2,解得.∴點(diǎn)Q坐標(biāo)為(,2)或(,2).③若ON=OM=2,則在Rt△NOH中,根據(jù)勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,化簡(jiǎn)得m2-1m+6=0,∵△=-8<0,∴此時(shí)不存在這樣的直線l,使得△MON為等腰三角形.綜上所述,存在這樣的直線l,使得△MON為等腰三角形.所求Q點(diǎn)的坐標(biāo)為(,2)或(,2)或(,2)或(,2).(1)首先求得A、B點(diǎn)的坐標(biāo),然后利用待定系數(shù)法求拋物線的解析式,并求出拋物線與x軸另一交點(diǎn)C的坐標(biāo).(2)求出線段PE長(zhǎng)度的表達(dá)式,設(shè)D點(diǎn)橫坐標(biāo)為t,則可以將PE表示為關(guān)于t的二次函數(shù),利用二次函數(shù)求極值的方法求出PE長(zhǎng)度的最大值.(2)根據(jù)等腰三角形的性質(zhì)和勾股定理,將直線l的存在性問題轉(zhuǎn)化為一元二次方程問題,通過一元二次方程的判別式可知直線l是否存在,并求出相應(yīng)Q點(diǎn)的坐標(biāo).“△MON是等腰三角形”,其中包含三種情況:MN=ON,MN=OM,ON=OM,逐一討論求解.22、水壩原來的高度為12米【解析】試題分析:設(shè)BC=x米,用x表示出AB的長(zhǎng),利用坡度的定義得到BD=BE,進(jìn)而列出x的方程,求出x的值即可.試題解析:設(shè)BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水壩原來的高度為12米..考點(diǎn):解直角三角形的應(yīng)用,坡度.23、(1)m(2)米【解析】分析:(1)由三角函數(shù)的定義,即可求得AM與AF的長(zhǎng),又由坡度的定義,即可求得NF的長(zhǎng),繼而求得平臺(tái)MN的長(zhǎng);(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論