版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
甘肅省張掖市甘州區(qū)張掖二中2026屆高二上數(shù)學(xué)期末監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)為坐標(biāo)原點(diǎn),直線與雙曲線的兩條漸近線分別交于兩點(diǎn),若的面積為8,則的焦距的最小值為()A.4 B.8C.16 D.322.直線與曲線相切于點(diǎn),則()A. B.C. D.3.函數(shù)在上的最大值是A. B.C. D.4.已知各項(xiàng)均為正數(shù)的等比數(shù)列滿足,若存在兩項(xiàng),使得,則的最小值為()A.4 B.C. D.95.設(shè)直線,.若,則的值為()A.或 B.或C. D.6.某校高二年級統(tǒng)計(jì)了參加課外興趣小組的學(xué)生人數(shù),每人只參加一類,數(shù)據(jù)如下表:學(xué)科類別文學(xué)新聞經(jīng)濟(jì)政治人數(shù)400300100200若從參加課外興趣小組的學(xué)生中采用分層抽樣的方法抽取50名參加學(xué)習(xí)需求的問卷調(diào)查,則從文學(xué)、新聞、經(jīng)濟(jì)、政治四類興趣小組中抽取的學(xué)生人數(shù)分別為()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,107.下列通項(xiàng)公式中,對應(yīng)數(shù)列是遞增數(shù)列的是()A B.C. D.8.若函數(shù)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B.C. D.9.已知橢圓的長軸長,短軸長,焦距長成等比數(shù)列,則橢圓離心率為()A. B.C. D.10.有下列四個(gè)命題,其中真命題是()A., B.,,C.,, D.,11.中國古代數(shù)學(xué)著作算法統(tǒng)宗中有這樣一個(gè)問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見首日行里數(shù),請公仔細(xì)算相還.”其大意為:有一個(gè)人走里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,恰好走了天到達(dá)目的地,則該人第一天走的路程為()A.里 B.里C.里 D.里12.命題“,”的否定為()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與圓交于,兩點(diǎn),則的最小值為___________.14.已知函數(shù),則曲線在處的切線方程為___________.15.已知方程,若此方程表示橢圓,則實(shí)數(shù)的取值范圍是________;若此方程表示雙曲線,則實(shí)數(shù)的取值范圍是________.16.已知直線與直線平行,則實(shí)數(shù)______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點(diǎn)到兩個(gè)定點(diǎn)的距離比為(1)求點(diǎn)的軌跡方程;(2)若過點(diǎn)的直線被點(diǎn)的軌跡截得的弦長為,求直線的方程18.(12分)如圖,在直三棱柱中,,,.M為側(cè)棱的中點(diǎn),連接,,CM.(1)證明:AC平面;(2)證明:平面;(3)求二面角的大小.19.(12分)已知圓過點(diǎn),,且圓心在直線:上.(1)求圓的方程;(2)若從點(diǎn)發(fā)出的光線經(jīng)過軸反射,反射光線剛好經(jīng)過圓心,求反射光線的方程.20.(12分)如圖,四棱臺的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值21.(12分)如圖,在三棱錐P-ABC中,△ABC是以AC為底的等腰直角三角形,PA=PB=PC=AC=4,O為AC的中點(diǎn).(1)證明:PO⊥平面ABC;(2)若點(diǎn)M在棱BC上,且,求平面MAP與平面CAP所成角的大小.22.(10分)如圖,已知四邊形中,,,,且,求四邊形的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】因?yàn)椋傻秒p曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點(diǎn)坐標(biāo),即可求得,根據(jù)的面積為,可得值,根據(jù),結(jié)合均值不等式,即可求得答案.【詳解】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點(diǎn)不妨設(shè)為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當(dāng)且僅當(dāng)取等號的焦距的最小值:故選:B.【點(diǎn)睛】本題主要考查了求雙曲線焦距的最值問題,解題關(guān)鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時(shí),要檢驗(yàn)等號是否成立,考查了分析能力和計(jì)算能力,屬于中檔題.2、A【解析】直線與曲線相切于點(diǎn),可得求得的導(dǎo)數(shù),可得,即可求得答案.【詳解】直線與曲線相切于點(diǎn)將代入可得:解得:由,解得:.可得,根據(jù)在上,解得:故故選:A.【點(diǎn)睛】本題考查了根據(jù)切點(diǎn)求參數(shù)問題,解題關(guān)鍵是掌握函數(shù)切線的定義和導(dǎo)數(shù)的求法,考查了分析能力和計(jì)算能力,屬于中檔題.3、D【解析】求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可,結(jié)合函數(shù)的單調(diào)性求出的最大值即可【詳解】函數(shù)的導(dǎo)數(shù)令可得,可得上單調(diào)遞增,在單調(diào)遞減,函數(shù)在上的最大值是故選D【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問題,是一道中檔題4、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【詳解】因?yàn)楦黜?xiàng)均為正數(shù)的等比數(shù)列滿足,可得,即解得或(舍去)∵,,∴=當(dāng)且僅當(dāng),即m=2,n=4時(shí),等號成立故的最小值等于.故選:C【點(diǎn)睛】方法點(diǎn)睛:本題主要考查等比數(shù)列的通項(xiàng)公式和基本不等式的應(yīng)用,解題的關(guān)鍵是常量代換的技巧,所謂常量代換,就是把一個(gè)常數(shù)用代數(shù)式來代替,如,再把常數(shù)6代換成已知中的m+n,即.常量代換是基本不等式里常用的一個(gè)技巧,可以優(yōu)化解題,提高解題效率.5、A【解析】由兩直線垂直可得出關(guān)于實(shí)數(shù)的等式,即可解得實(shí)數(shù)的值.【詳解】因?yàn)?,則,解得或.故選:A.6、D【解析】利用分層抽樣的等比例性質(zhì)求抽取的樣本中所含各小組的人數(shù).【詳解】根據(jù)分層抽樣的等比例性質(zhì)知:文學(xué)小組抽取人數(shù)為人;新聞小組抽取人數(shù)為人;經(jīng)濟(jì)小組抽取人數(shù)為人;政治小組抽取人數(shù)為人;故選:D.7、C【解析】根據(jù)數(shù)列單調(diào)性的定義逐項(xiàng)判斷即可.【詳解】對于A,B選項(xiàng)對應(yīng)數(shù)列是遞減數(shù)列.對于C選項(xiàng),,故數(shù)列是遞增數(shù)列.對于D選項(xiàng),由于.所以數(shù)列不是遞增數(shù)列故選:C.8、C【解析】函數(shù)有兩個(gè)零點(diǎn)等價(jià)于方程有兩個(gè)根,等價(jià)于與圖象有兩個(gè)交點(diǎn),通過導(dǎo)數(shù)分析的單調(diào)性,根據(jù)圖象即可求出求出的范圍.【詳解】函數(shù)有兩個(gè)零點(diǎn),方程有兩個(gè)根,,分離參數(shù)得,與圖象有兩個(gè)交點(diǎn),令,,令,解得當(dāng)時(shí),,在單調(diào)遞增,當(dāng)時(shí),,在單調(diào)遞減,且在處取得極大值及最大值,可以畫出函數(shù)的大致圖象如下:觀察圖象可以得出.故選:C.【點(diǎn)睛】本題主要考查函數(shù)零點(diǎn)的應(yīng)用,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.9、A【解析】由題意,,結(jié)合,求解即可【詳解】∵橢圓的長軸長,短軸長,焦距長成等比數(shù)列∴∴又∵∴∴,即∴e=又在橢圓e>0∴e=故選:A10、B【解析】對于選項(xiàng)A,令即可驗(yàn)證其不正確;對于選項(xiàng)C、選項(xiàng)D,令,即可驗(yàn)證其均不正確,進(jìn)而可得出結(jié)果.【詳解】對于選項(xiàng)A,令,則,故A錯(cuò);對于選項(xiàng)B,令,則,顯然成立,故B正確;對于選項(xiàng)C,令,則顯然無解,故C錯(cuò);對于選項(xiàng)D,令,則顯然不成立,故D錯(cuò).故選B【點(diǎn)睛】本題主要考查命題真假的判定,用特殊值法驗(yàn)證即可,屬于??碱}型.11、C【解析】建立等比數(shù)列的模型,由等比數(shù)列的前項(xiàng)和公式求解【詳解】記第天走的路程為里,則是等比數(shù)列,,,故選:C12、A【解析】利用含有一個(gè)量詞的命題的否定的定義求解.【詳解】因?yàn)槊}“,”是全稱量詞命題,所以其否定是存在量詞命題,即為,,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出直線經(jīng)過的定點(diǎn),再求出圓心到定點(diǎn)的距離,數(shù)形結(jié)合即得解.【詳解】由題得,所以直線經(jīng)過定點(diǎn),圓的圓心為,半徑為.圓心到定點(diǎn)的距離為,當(dāng)時(shí),取得最小值,且最小值為.故答案為:814、【解析】求出函數(shù)的導(dǎo)函數(shù),即可求出切線的斜率,再利用點(diǎn)斜式求出切線方程【詳解】解:∵,∴,又,∴曲線在點(diǎn)處的切線方程為,即.故答案為:.15、①.②.【解析】分別根據(jù)橢圓、雙曲線的標(biāo)準(zhǔn)方程的特征建立不等式即可求解.【詳解】當(dāng)方程表示橢圓時(shí),則有且,所以的取值范圍是;當(dāng)方程表示雙曲線時(shí),則有或,所以的取值范圍是.故答案為:;16、【解析】分類討論,兩種情況,結(jié)合直線平行的知識得出實(shí)數(shù).【詳解】當(dāng)時(shí),直線與直線垂直;當(dāng)時(shí),,則且,解得.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)設(shè)出,表達(dá)出,直接法求出軌跡方程;(2)在第一問的基礎(chǔ)上,先考慮直線斜率不存在時(shí)是否符合要求,再考慮斜率存在時(shí),設(shè)出直線方程,表達(dá)出圓心到直線的距離,利用垂徑定理列出方程,求出直線方程.【小問1詳解】設(shè),則,,故,兩邊平方得:【小問2詳解】當(dāng)直線斜率不存在時(shí),直線為,此時(shí)弦長為,滿足題意;當(dāng)直線斜率存在時(shí),設(shè)直線,則圓心到直線距離為,由垂徑定理得:,解得:,此時(shí)直線的方程為,綜上:直線的方程為或.18、(1)證明見詳解;(2)證明見詳解;(3)【解析】小問1:由于,根據(jù)線面平行判定定理即可證明;小問2:以為原點(diǎn),分別為軸建立空間坐標(biāo)系,根據(jù)向量垂直關(guān)系即可證明;小問3:分別求得平面與平面的法向量,根據(jù)向量夾角公式即可求解【小問1詳解】在直三棱柱中,,且平面,平面所以AC平面;【小問2詳解】因?yàn)椋室詾樵c(diǎn),分別為軸建立空間坐標(biāo)系如圖所示:則,所以則所以又平面,平面故平面;【小問3詳解】由,得,設(shè)平面的一個(gè)法向量為則得又因?yàn)槠矫娴囊粋€(gè)法向量為所以所以二面角的大小為19、(1);(2)【解析】(1)根據(jù)題意設(shè)圓心,利用兩點(diǎn)坐標(biāo)公式求距離公式表示出,解出,確定圓心坐標(biāo)和半徑,進(jìn)而得出圓的標(biāo)準(zhǔn)方程;(2)根據(jù)點(diǎn)關(guān)于坐標(biāo)軸對稱的點(diǎn)的特征可得,利用直線的兩點(diǎn)式方程即可得出結(jié)果.【小問1詳解】圓過點(diǎn),,因?yàn)閳A心在直線::上,設(shè)圓心,又圓過點(diǎn),,所以,即,解得,所以,所以故圓的方程為:;【小問2詳解】點(diǎn)關(guān)于軸的對稱點(diǎn),則反射光線必經(jīng)過點(diǎn)和點(diǎn),由直線的兩點(diǎn)式方程可得,即:.20、(1)證明見解析;(2).【解析】(1):連結(jié)交交于點(diǎn)O,連結(jié),,通過四棱臺的性質(zhì)以及給定長度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質(zhì)定理以及基本事實(shí)可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結(jié)交交于點(diǎn)O,連結(jié),,由多面體為四棱臺可知四點(diǎn)共面,且面面,面面,面面,∴,∵和均為正方形,,∴,所以為平行四邊形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直線m與平面所成角可轉(zhuǎn)化為求與平面所成角,∵和均為正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,設(shè)O在面的投影為M,則,∴為與平面所成角,由,可得,又∵,∴∴,直線m與平面所成角的正弦值為.【點(diǎn)睛】思路點(diǎn)睛:(1)找兩個(gè)平面的交線,可通過兩個(gè)平面的交點(diǎn)找到,也可利用線面平行的性質(zhì)找和交線的平行直線;(2)求直線和平面所成角,過直線上一點(diǎn)做平面的垂線,則垂足和斜足連線與直線所成角即為直線和平面所成角.21、(1)證明見解析(2)【解析】(1)接BO,由是等邊三角形得,由得出,再利用線面垂直的判斷定理可得平面;(2)建立以為坐標(biāo)原點(diǎn),分別為軸的空間直角坐標(biāo)系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小問1詳解】連接BO,由已知△ABC是以AC為底的等腰直角三角形,且PA=PB=PC=AC=4,O為AC的中點(diǎn),則是等邊三角形,,,在中,,滿足,即是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 裝配式建筑施工員安全素養(yǎng)測試考核試卷含答案
- 野生動(dòng)物管護(hù)工安全演練測試考核試卷含答案
- 硬質(zhì)合金燒結(jié)工道德測試考核試卷含答案
- 卷煙封裝設(shè)備操作工操作管理測試考核試卷含答案
- 老年癡呆患者治療決策的倫理教學(xué)
- 老年疾病樣本庫的長期存儲(chǔ)方案
- 住改商消防安全整治指南
- 2025四川成都市雙流區(qū)空港第四幼兒園招聘7人備考題庫及答案詳解參考
- 臨床用血申請管理制度
- 老年熱浪MOF的腸道微生態(tài)干預(yù)策略
- 安全管理制度培訓(xùn)課件
- 2025年12月福建廈門市鷺江創(chuàng)新實(shí)驗(yàn)室管理序列崗位招聘8人備考題庫必考題
- 2025下半年四川綿陽市涪城區(qū)事業(yè)單位選調(diào)10人備考題庫及答案解析(奪冠系列)
- 高一生物上冊期末考試題庫含解析及答案
- 收購商場協(xié)議書范本
- 承攬加工雕塑合同范本
- 中國大麻行業(yè)研究及十五五規(guī)劃分析報(bào)告
- 寒假前安全法律教育課件
- 干熱復(fù)合事件對北半球植被的影響及響應(yīng)機(jī)制研究
- 2025年四川單招護(hù)理試題及答案
- 毛巾染色知識培訓(xùn)課件
評論
0/150
提交評論