版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西贛中南五校2026屆高二數(shù)學第一學期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則滿足不等式的的取值范圍是()A. B.C. D.2.已知等比數(shù)列{an}的前n項和為S,若,且,則S3等于()A.28 B.26C.28或-12 D.26或-103.某市物價部門對5家商場的某商品一天的銷售量及其售價進行調查,5家商場的售價(元)和銷售量(件)之間的一組數(shù)據(jù)如表所示.按公式計算,與的回歸直線方程是,則下列說法錯誤的是()售價99.51010.511銷售量1110865A.B.售價變量每增加1個單位時,銷售變量大約減少3.2個單位C.當時,的估計值為12.8D.銷售量與售價成正相關4.設是等差數(shù)列的前n項和,若,,則()A.26 B.-7C.-10 D.-135.拋物線有如下光學性質:平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點.已知拋物線的焦點為F,一條平行于y軸的光線從點射出,經(jīng)過拋物線上的點A反射后,再經(jīng)拋物線上的另一點B射出,則經(jīng)點B反射后的反射光線必過點()A. B.C. D.6.幾何學史上有一個著名的米勒問題:“設點、是銳角的一邊上的兩點,試在邊上找一點,使得最大的.”如圖,其結論是:點為過、兩點且和射線相切的圓的切點.根據(jù)以上結論解決一下問題:在平面直角坐標系中,給定兩點,,點在軸上移動,當取最大值時,點的橫坐標是()A.B.C.或D.或7.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術”.現(xiàn)有一個高階等差數(shù)列,其前7項分別為1,5,11,21,37,61,95,則該數(shù)列的第7項為()A.101 B.99C.95 D.918.已知雙曲線C:的右焦點為,一條漸近線被圓截得的弦長為2b,則雙曲線C的離心率為()A. B.C.2 D.9.第24屆冬季奧林匹克運動會,將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運史上第一個舉辦過夏季奧林匹克運動會和冬季奧林匹克運動會的城市.根據(jù)安排,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結構鳥瞰圖如圖所示,內外兩圈的鋼骨架是兩個“相似橢圓”(離心率相同的兩個橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長軸一端點A和短軸一端點B分別向內層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.10.函數(shù)極小值為()A. B.C. D.11.在正三棱錐中,,且,M,N分別為BC,AD的中點,則直線AM和CN夾角的余弦值為()A. B.C. D.12.若直線與直線垂直,則()A.6 B.4C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校為了解學生學習的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調查.已知高一被抽取的人數(shù)為,那么高二被抽取的人數(shù)為__.14.已知橢圓交軸于A,兩點,點是橢圓上異于A,的任意一點,直線,分別交軸于點,,則為定值.現(xiàn)將雙曲線與橢圓類比得到一個真命題:若雙曲線交軸于A,兩點,點是雙曲線上異于A,的任意一點,直線,分別交軸于點,,則為定值___15.已知,為雙曲線的左、右焦點,過作的垂線分別交雙曲線的左、右兩支于B,C兩點(如圖).若,則雙曲線的漸近線方程為______16.從雙曲線上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知三棱柱的側棱與底面垂直,,,和分別是和的中點,點在直線上,且.(1)證明:無論取何值,總有;(2)是否存在點,使得平面與平面所成角為?若存在,試確定點的位置;若不存在,請說明理由.18.(12分)已知橢圓C:的離心率為,點為橢圓C上一點(1)求橢圓C的方程;(2)若M,N是橢圓C上的兩個動點,且的角平分線總是垂直于y軸,求證:直線MN的斜率為定值19.(12分)在四棱錐中,平面,底面是邊長為2的菱形,分別為的中點.(1)證明:平面;(2)求三棱錐的體積.20.(12分)如圖,在三棱錐中,,點P為線段MC上的點(1)若平面PAB,試確定點P的位置,并說明理由;(2)若,,,求三棱錐的體積21.(12分)已知拋物線上的點到焦點的距離為6(1)求拋物線的方程;(2)設為拋物線的焦點,直線與拋物線交于,兩點,求的面積22.(10分)如圖,在四棱錐中,平面平面,,,,,(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)若點在棱上,且平面,求線段的長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用導數(shù)判斷函數(shù)的單調性,根據(jù)單調性即可解不等式【詳解】由則函數(shù)在上單調遞增又,所以,解得故選:A2、C【解析】根據(jù)等比數(shù)列的通項公式列出方程求解,直接計算S3即可.【詳解】由可得,即,所以,又,解得,所以,即,當時,,所以,當時,,所以,故選:C3、D【解析】首先求出、,再根據(jù)回歸直線方程必過樣本中心點,即可求出,再根據(jù)回歸直線方程的性質一一判斷即可;【詳解】解:因為,,與回歸直線方程,恒過定點,,解得,故A正確,所以回歸直線方程為,即售價變量每增加1個單位時,銷售變量大約減少3.2個單位,故B正確;當時,即當時,的估計值為12.8,故C正確;因為回歸直線方程為,所以銷售量與售價成負相關,故D錯誤;故選:D4、C【解析】直接利用等差數(shù)列通項和求和公式計算得到答案.【詳解】,,解得,故.故選:C.5、D【解析】求出、坐標可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因為反射光線平行于y軸,根據(jù)選項可得D正確,故選:D6、A【解析】根據(jù)米勒問題的結論,點應該為過點、的圓與軸的切點,設圓心的坐標為,寫出圓的方程,并將點、的坐標代入可求出點的橫坐標.【詳解】解:設圓心的坐標為,則圓的方程為,將點、的坐標代入圓的方程得,解得或(舍去),因此,點的橫坐標為,故選:A.7、C【解析】根據(jù)所給數(shù)列找到規(guī)律:兩次后項減前項所得數(shù)列為公差為2的數(shù)列,進而反向確定原數(shù)列的第7項.【詳解】根據(jù)所給定義,用數(shù)列的后一項減去前一項得到一個數(shù)列,得到的數(shù)列也用后一項減去前一項得到一個數(shù)列,即得到了一個等差數(shù)列,如圖:故選:C.8、A【解析】求出圓心到漸近線的距離,根據(jù)弦長建立關系即可求解.【詳解】雙曲線的漸近線方程為,即,則點到漸近線的距離為,因為弦長為,圓半徑為,所以,即,因為,所以,則雙曲線的離心率為.故選:A.9、C【解析】設內層橢圓的方程為,可得外層橢圓的方程為,設切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結合題意求得,進而求得離心率.【詳解】設內層橢圓方程為,因為內外層的橢圓的離心率相同,可設外層橢圓的方程為,設切線的方程為,聯(lián)立方程組,整理得,由,整理得,設切線的方程為,同理可得,因為兩切線斜率之積等于,可得,可得,所以離心率為.故選:C.10、A【解析】利用導數(shù)分析函數(shù)的單調性,可求得該函數(shù)的極小值.【詳解】對函數(shù)求導得,令,可得或,列表如下:減極小值增極大值減所以,函數(shù)的極小值為.故選:A.11、B【解析】由題意可得兩兩垂直,所以以為原點,所在的直線分別為軸,建立空間直角坐標系,利用空間向量求解【詳解】因為,所以兩兩垂直,所以以為原點,所在的直線分別為軸,建立空間直角坐標系,如圖所示,因為,所以,因為M,N分別為BC,AD的中點,所以,所以,設直線AM和CN所成的角為,則,所以直線AM和CN夾角的余弦值為,故選:B12、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用分層抽樣可求得的值,再利用分層抽樣可求得高二被抽取的人數(shù).【詳解】高一年級抽取的人數(shù)為:人,則,則高二被抽取的人數(shù),故答案為:.14、-【解析】由雙曲線的方程可得,的坐標,設的坐標,代入雙曲線的方程可得的橫縱坐標的關系,求出直線,的方程,令,分別求出,的縱坐標,求出的表達式,整理可得為定值【詳解】由雙曲線的方程可得,,設,則,可得,直線的方程為:,令,則,可得,直線的方程為,令,可得,即,∴,,,故答案為:-另解:雙曲線方程化為,只是將的替換為-,故答案也是只需將中的替換為-即可.故答案為:-.15、【解析】根據(jù)雙曲線的定義先計算出,,注意到圖中漸近線,于是利用兩種不同的表示法列方程求解.【詳解】,則,由雙曲線的定義及在右支上,,又在左支上,則,則,在中,由余弦定理,,而圖中漸近線,于是,得,于是,不妨令,化簡得,解得,漸近線就為:.故答案為:.16、.【解析】根據(jù)題意,設,進而根據(jù)中點坐標公式及點P已知雙曲線上求得答案.【詳解】由題意,設,則,則,即,因為,則,即的軌跡方程為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)不存在,理由見解析.【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,計算得出,即可得出結論;(2)計算出平面的一個法向量,利用空間向量法可得出關于的方程,即可得出結論.【詳解】(1)因為平面,,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、,,,所以,,則,因此,無論取何值,總有;(2),設平面的法向量為,則,取,則,,所以,平面的一個法向量為,易知平面的一個法向量為,由題意可得,整理可得,,此方程無解,因此,不存在點,使得平面與平面所成的角為.18、(1);(2)證明見解析.【解析】(1)根據(jù)橢圓的離心率公式,結合代入法進行求解即可;(2)根據(jù)角平分線的性質,結合一元二次方程根與系數(shù)關系、斜率公式進行求解即可.【小問1詳解】橢圓的離心率,又,∴∵橢圓C:經(jīng)過點,解得,∴橢圓C的方程為;【小問2詳解】∵∠MPN的角平分線總垂直于y軸,∴MP與NP所在直線關于直線對稱.設直線MP的斜率為k,則直線NP的斜率為∴設直線MP的方程為,直線NP的方程為設點,由消去y,得∵點在橢圓C上,則有,即同理可得∴,又∴直線MN的斜率為【點睛】關鍵點睛:由∠MPN的角平分線總垂直于y軸,得到MP與NP所在直線關于直線對稱是解題的關鍵.19、(1)證明見解析(2)【解析】(1)取的中點,利用三角形中位線定理可證明BG//EF,由線線平行,可得線面平行;(2根據(jù)圖像可得,以為底面,證明為高,利用三棱錐的體積公式,可得答案;【小問1詳解】取的中點,因為為的中點,所以且,又因為為的中點,四邊形為菱形,所以且,所以且,故四邊形BFEG為平行四邊形,所以BG//EF,因為面面,所以面.【小問2詳解】因為底面是邊長為2的菱形,,則為正三角形,所以因為面,所以為三棱錐的高所以三棱錐的體積.20、(1)點P為MC中點,理由見解析(2)【解析】(1)根據(jù)平面PAB,得到線線垂直,再得到點P的位置;(2)根據(jù)平面PAB,將問題轉化為計算即可.【小問1詳解】∵平面PAB,平面ABP,∴又∵在中,,∴P為MC中點.∴若平面PAB,則點P為MC中點【小問2詳解】當P為中點時,在中,,,∴,同理可得∴在中,,∵由(1)知平面PAB,∴∴三棱錐的體積為21、(1)(2)【解析】(1)根據(jù)焦半徑公式可求,從而可求拋物線的方程.(2)求出的長度后可求的面積.【小問1詳解】因為,所以,故拋物線方程為:.【小問2詳解】設,且,由可得,故或,故,故,故,而到直線的距離為,故的面積為22、(Ⅰ)見解析.(Ⅱ).(Ⅲ).【解析】第一問根據(jù)面面垂直的性質和線面垂直的性質得出線線垂直的結論,注意在書寫的時候條件不要丟就行;第二問建立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026重慶一中寄宿學校融媒體中心招聘1人備考題庫及答案詳解參考
- 公共場所綠化養(yǎng)護景觀管理手冊
- 2026海南渠田水利水電勘測設計有限公司天津分公司招聘備考題庫及答案詳解(新)
- 2026年數(shù)據(jù)庫性能調優(yōu)實戰(zhàn)課程
- 起重吊裝安全督查課件
- 職業(yè)共病管理中的病理機制探討
- 職業(yè)健康科普資源整合策略
- 職業(yè)健康監(jiān)護中的標準化質量管理體系
- 職業(yè)健康溝通策略創(chuàng)新實踐
- 職業(yè)健康歸屬感對醫(yī)療員工組織承諾的正向影響
- 2026屆南通市高二數(shù)學第一學期期末統(tǒng)考試題含解析
- 寫字樓保潔培訓課件
- 2026中國電信四川公用信息產業(yè)有限責任公司社會成熟人才招聘備考題庫有完整答案詳解
- 計量宣貫培訓制度
- 運輸人員教育培訓制度
- 2026中國電信四川公用信息產業(yè)有限責任公司社會成熟人才招聘備考題庫有答案詳解
- 升降貨梯買賣安裝與使用說明書合同
- 河南豫能控股股份有限公司及所管企業(yè)2026屆校園招聘127人考試備考題庫及答案解析
- 房地產公司2025年度總結暨2026戰(zhàn)略規(guī)劃
- 物業(yè)管家客服培訓課件
- 虛假貿易十不準培訓課件
評論
0/150
提交評論