2026屆南通市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
2026屆南通市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
2026屆南通市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
2026屆南通市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
2026屆南通市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆南通市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國的刺繡有著悠久的歷史,如圖,(1)(2)(3)(4)為刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形個數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個圖形包含個小正方形,則的表達式為()A. B.C. D.2.在等差數(shù)列中,已知,則數(shù)列的前6項之和為()A.12 B.32C.36 D.723.在平面直角坐標系中,已知點,,,,直線AP,BP相交于點P,且它們斜率之積是.當(dāng)時,的最小值為()A. B.C. D.4.拋物線上的一點到其焦點的距離等于()A. B.C. D.5.若存在,使得不等式成立,則實數(shù)k的取值范圍為()A. B.C. D.6.如果直線與直線垂直,那么的值為()A. B.C. D.27.雙曲線的離心率是,則雙曲線的漸近線方程是()A. B.C. D.8.已知橢圓的左、右焦點分別為、,點在橢圓上,若,則的面積為()A. B.C. D.9.過點,的直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或410.2021年7月,某文學(xué)網(wǎng)站對該網(wǎng)站的數(shù)字媒體內(nèi)容能否滿足讀者需要進行了調(diào)查,調(diào)查部門隨機抽取了名讀者,所得情況統(tǒng)計如下表所示:滿意程度學(xué)生族上班族退休族滿意一般不滿意記滿分為分,一般為分,不滿意為分.設(shè)命題:按分層抽樣方式從不滿意的讀者中抽取人,則退休族應(yīng)抽取人;命題:樣本中上班族對數(shù)字媒體內(nèi)容滿意程度的方差為.則下列命題中為真命題的是()A. B.C. D.11.已知數(shù)列滿足,,數(shù)列的前n項和為,若,,成等差數(shù)列,則n=()A.6 B.8C.16 D.2212.拋物線焦點坐標為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若遞增數(shù)列滿足,則實數(shù)的取值范圍為__________.14.已知球的表面積為,則該球的體積為______.15.若曲線在點處的切線斜率為,則___________.16.北京天壇的圓丘壇為古代祭天的場所,分上、中、下三層,上層的中心是一塊天心石,圍繞它的第一圈有9塊石板,從第二圈開始,每一圈比前一圈多9塊.已知每層圈數(shù)相同,共有9圈,則下層比上層多______塊石板三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面滿足,,底面,且,.(1)證明平面;(2)求平面與平面的夾角.18.(12分)【2018年新課標I卷文】已知函數(shù)(1)設(shè)是的極值點.求,并求的單調(diào)區(qū)間;(2)證明:當(dāng)時,19.(12分)在如圖三角形數(shù)陣中第n行有n個數(shù),表示第i行第j個數(shù),例如,表示第4行第3個數(shù).該數(shù)陣中每一行的第一個數(shù)從上到下構(gòu)成以m為公差的等差數(shù)列,從第三行起每一行的數(shù)從左到右構(gòu)成以m為公比的等比數(shù)列(其中).已知.(1)求m及;(2)記,求.20.(12分)已知點為拋物線的焦點,點在拋物線上,的面積為1.(1)求拋物線的標準方程;(2)設(shè)點是拋物線上異于點的一點,直線與直線交于點,過作軸的垂線交拋物線于點,求證:直線過定點.21.(12分)“既要金山銀山,又要綠水青山”.濱江風(fēng)景區(qū)在一個直徑為100米的半圓形花園中設(shè)計一條觀光線路(如圖所示).在點與圓弧上的一點(不同于A,B兩點)之間設(shè)計為直線段小路,在直線段小路的兩側(cè)(注意是兩側(cè))種植綠化帶;再從點到點設(shè)計為沿弧的弧形小路,在弧形小路的內(nèi)側(cè)(注意是一側(cè))種植綠化帶(注:小路及綠化帶的寬度忽略不計).(1)設(shè)(弧度),將綠化帶總長度表示為的函數(shù);(2)試確定的值,使得綠化帶總長度最大.(弧度公式:,其中為弧所對的圓心角)22.(10分)已知拋物線C:焦點F的橫坐標等于橢圓的離心率.(1)求拋物線C的方程;(2)過(1,0)作直線l交拋物線C于A,B兩點,判斷原點與以線段AB為直徑的圓的位置關(guān)系,并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先分別觀察給出正方體的個數(shù)為:1,,,,總結(jié)一般性的規(guī)律,將一般性的數(shù)列轉(zhuǎn)化為特殊的數(shù)列再求解【詳解】解:根據(jù)前面四個發(fā)現(xiàn)規(guī)律:,,,,,累加得:,,故選:【點睛】本題主要考查了歸納推理,屬于中檔題2、C【解析】利用等差數(shù)列的求和公式結(jié)合角標和定理即可求解.【詳解】解:等差數(shù)列中,所以等差數(shù)列的前6項之和為:故選:C.3、A【解析】設(shè)出點坐標,求得、所在直線的斜率,由斜率之積是列式整理即可得到點的軌跡方程,設(shè),根據(jù)雙曲線的定義,從而求出的最小值;【詳解】解:設(shè)點坐標為,則直線的斜率;直線的斜率由已知有,化簡得點的軌跡方程為又,所以點的軌跡方程為,即點的軌跡為以、為頂點的雙曲線的左支(除點),因為,設(shè),由雙曲線的定義可知,所以,當(dāng)且僅當(dāng)、、三點共線時取得最小值,因為,所以,所以,即的最小值為;故選:A4、C【解析】由點的坐標求得參數(shù),再由焦半徑公式得結(jié)論【詳解】由題意,解得,所以,故選:C5、C【解析】根據(jù)題意和一元二次不等式能成立可得對于,成立,令,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,即可求出.【詳解】存在,不等式成立,則,能成立,即對于,成立,令,,則,令,所以當(dāng),單調(diào)遞增,當(dāng),單調(diào)遞減,又,所以f(x)>-3,所以.故選:C6、A【解析】根據(jù)兩條直線垂直列方程,化簡求得的值.【詳解】由于直線與直線垂直,所以.故選:A7、B【解析】利用雙曲線的離心率,以及漸近線中,關(guān)系,結(jié)合找關(guān)系即可【詳解】解:,又因為在雙曲線中,,所以,故,所以雙曲線的漸近線方程為,故選:B8、B【解析】求出,可知為等腰三角形,取的中點,可得出,利用勾股定理求得,利用三角形的面積公式可求得結(jié)果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點,因為,則,由勾股定理可得,所以,.故選:B.9、A【解析】解方程即得解.【詳解】由題得.故選:A【點睛】本題主要考查斜率的計算,意在考查學(xué)生對該知識的理解掌握水平.10、A【解析】由抽樣比再乘以可得退休族應(yīng)抽取人數(shù)可判斷命題,求出上班族對數(shù)字媒體內(nèi)容滿意程度的平均分,由方差公式計算方差可判斷,再由復(fù)合命題的真假判斷四個選項,即可得正確選項.【詳解】因為退休族應(yīng)抽取人,所以命題正確;樣本中上班族對數(shù)字媒體內(nèi)容滿意程度的平均分為,方差為,命題正確,所以為真,、、為假命題,故選:11、D【解析】利用累加法求得列的通項公式,再利用裂項相消法求得數(shù)列的前n項和為,再根據(jù),,成等差數(shù)列,得,從而可得出答案.【詳解】解:因為,且,所以當(dāng)時,,因為也滿足,所以.因為,所以.若,,成等差數(shù)列,則,即,得.故選:D.12、C【解析】由拋物線方程確定焦點位置,確定焦參數(shù),得焦點坐標【詳解】拋物線的焦點在軸正半軸,,,,因此焦點坐標為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)的單調(diào)性列不等式,由此求得的取值范圍.【詳解】由于是遞增數(shù)列,所以.所以的取值范圍是.故答案為:14、【解析】設(shè)球半徑為,由球表面積求出,然后可得球的體積【詳解】設(shè)球半徑為,∵球的表面積為,∴,∴,∴該球的體積為故答案為【點睛】解答本題的關(guān)鍵是熟記球的表面積和體積公式,解題時由條件求得球的半徑后可得所求結(jié)果15、【解析】由導(dǎo)數(shù)的幾何意義求解即可【詳解】,,解得.故答案為:116、1458【解析】首先由條件可得第圈的石板為,且為等差數(shù)列,利用基本量求和,即可求解.【詳解】設(shè)第圈的石板為,由條件可知數(shù)列是等差數(shù)列,且上層的第一圈為,且,所以,上層的石板數(shù)為,下層的石板數(shù)為.所以下層比上層多塊石板.故答案為:1458三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由已知結(jié)合線面平行判定定理可得;(2)建立空間直角坐標系,由向量法可解.【小問1詳解】∵,,∴,又平面,平面,∴平面;【小問2詳解】∵平面且、平面,∴,,又∵,故分別以所在直線為軸,軸、軸,建立如圖空間直角坐標系,如圖所示:由,,可得:,,,,,由已知平面,平面,,,,,平面,所以平面,為平面的一個法向量,且;設(shè)為平面的一個法向量,則,,,,,,,令,則,,,設(shè)平面與平面的夾角大小為,,由得:平面與平面的夾角大小為18、(1)a=;f(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增.(2)證明見解析.【解析】分析:(1)先確定函數(shù)的定義域,對函數(shù)求導(dǎo),利用f′(2)=0,求得a=,從而確定出函數(shù)的解析式,之后觀察導(dǎo)函數(shù)的解析式,結(jié)合極值點的位置,從而得到函數(shù)的增區(qū)間和減區(qū)間;(2)結(jié)合指數(shù)函數(shù)的值域,可以確定當(dāng)a≥時,f(x)≥,之后構(gòu)造新函數(shù)g(x)=,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得g(x)≥g(1)=0,利用不等式的傳遞性,證得結(jié)果.詳解:(1)f(x)的定義域為,f′(x)=aex–由題設(shè)知,f′(2)=0,所以a=從而f(x)=,f′(x)=當(dāng)0<x<2時,f′(x)<0;當(dāng)x>2時,f′(x)>0所以f(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增(2)當(dāng)a≥時,f(x)≥設(shè)g(x)=,則當(dāng)0<x<1時,g′(x)<0;當(dāng)x>1時,g′(x)>0.所以x=1是g(x)的最小值點故當(dāng)x>0時,g(x)≥g(1)=0因此,當(dāng)時,點睛:該題考查的是有關(guān)導(dǎo)數(shù)的應(yīng)用問題,涉及到的知識點有導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值、導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系以及證明不等式問題,在解題的過程中,首先要保證函數(shù)的生存權(quán),先確定函數(shù)的定義域,之后根據(jù)導(dǎo)數(shù)與極值的關(guān)系求得參數(shù)值,之后利用極值的特點,確定出函數(shù)的單調(diào)區(qū)間,第二問在求解的時候構(gòu)造新函數(shù),應(yīng)用不等式的傳遞性證得結(jié)果.19、(1),;(2)【解析】(1)根據(jù)題意以m表示出,由即可求出,進而求出;(2)根據(jù)等差數(shù)列和等比數(shù)列的通項公式求出,再利用錯位相減法即可求出.【詳解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,當(dāng)時,,又,,滿足,,,兩式相減得,.【點睛】方法點睛:數(shù)列求和的常用方法:(1)對于等差等比數(shù)列,利用公式法可直接求解;(2)對于結(jié)構(gòu),其中是等差數(shù)列,是等比數(shù)列,用錯位相減法求和;(3)對于結(jié)構(gòu),利用分組求和法;(4)對于結(jié)構(gòu),其中是等差數(shù)列,公差為,則,利用裂項相消法求和.20、(1)(2)證明見解析【解析】(1)由條件列方程求,由此可得拋物線方程;(2)方法一:聯(lián)立直線與拋物線方程,結(jié)合條件三點共線,可證明直線過定點,方法二:聯(lián)立直線與拋物線方程,聯(lián)立直線與直線求,由垂直與軸列方程化簡,可證明直線過定點.【小問1詳解】因為點在拋物線上,所以,即,,因為,故解得,拋物線的標準方程為【小問2詳解】設(shè)直線的方程為,由,得,所以,由(1)可知當(dāng)時,,此時直線的方程為,若時,因為三點共線,所以,即,又因為,,化簡可得,又,進而可得,整理得,因為所以,此時直線的方程為,直線恒過定點又直線也過點,綜上:直線過定點解法二:設(shè)方程,得若直線斜率存在時斜率方程為即解得:,于是有整理得.(*)代入上式可得所以直線方程為直線過定點.若直線斜率不存在時,直線方程為所以P點坐標為,M點坐標為此時直線方程為過點綜上:直線過定點.【點睛】解決直線與拋物線的綜合問題時,要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個條件,明確確定直線、拋物線的條件;(2)強化有關(guān)直線與拋物線聯(lián)立得出一元二次方程后的運算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題21、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧長公式求出弧的長度,則可得函數(shù);(2)利用導(dǎo)數(shù)可求得結(jié)果.【詳解】(1)如圖,連接在直角三角形中,所以由于則弧的長為(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論