版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆陜西省西安一中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知圓的圓心在軸上,半徑為2,且與直線相切,則圓的方程為A. B.或C. D.或2.在等差數(shù)列中,,則的公差為()A.1 B.2C.3 D.43.的二項(xiàng)展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)是第()項(xiàng).A.6 B.5C.4和6 D.5和74.橢圓上的點(diǎn)P到直線x+2y-9=0的最短距離為()A. B.C. D.5.拋物線的準(zhǔn)線方程為,則實(shí)數(shù)的值為()A. B.C. D.6.設(shè)正數(shù)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)積為,且,則()A. B.C. D.7.為了解青少年視力情況,統(tǒng)計(jì)得到名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個(gè)位數(shù),葉表示十分位數(shù),則該組數(shù)據(jù)的中位數(shù)是()A. B.C. D.8.的展開式中的系數(shù)是()A. B.C. D.9.等比數(shù)列的各項(xiàng)均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.10.若在直線上,則直線的一個(gè)方向向量為()A. B.C. D.11.已知滿約束條件,則的最大值為()A.0 B.1C.2 D.312.設(shè)函數(shù),,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)設(shè)上存在極大值M,證明:.14.,成立為真命題,則實(shí)數(shù)的取值范圍______.15.已知雙曲線,則圓的圓心C到雙曲線漸近線的距離為______16.已知平面,過空間一定點(diǎn)P作一直線l,使得直線l與平面,所成的角都是30°,則這樣的直線l有______條三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線(1)證明直線與圓C一定有兩個(gè)交點(diǎn);(2)求直線與圓相交的最短弦長,并求對應(yīng)弦長最短時(shí)的直線方程18.(12分)已知數(shù)列的首項(xiàng),且滿足.(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求數(shù)列的前項(xiàng)和.19.(12分)已知橢圓的離心率為,短軸長為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知,A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)A作斜率為的直線交橢圓于另一點(diǎn)E,連接EP并延長交橢圓于另一點(diǎn)F,記直線BF的斜率為.若,求直線EF的方程20.(12分)已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對的邊,且.(1)求C;(2)若D是BC的中點(diǎn),,,求AB的長.21.(12分)阿基米德(公元前年—公元前年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸與短半軸的乘積.已知平面直角坐標(biāo)系中,橢圓:的面積為,兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成等邊三角形.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)的直線與交于不同的兩點(diǎn),求面積的最大值.22.(10分)已知的三個(gè)頂點(diǎn)是,,(1)求邊所在的直線方程;(2)求經(jīng)過邊的中點(diǎn),且與邊平行的直線的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】設(shè)圓心坐標(biāo),由點(diǎn)到直線距離公式可得或,進(jìn)而求得答案【詳解】設(shè)圓心坐標(biāo),因?yàn)閳A與直線相切,所以由點(diǎn)到直線的距離公式可得,解得或.因此圓的方程為或.【點(diǎn)睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,屬于一般題2、A【解析】根據(jù)等差數(shù)列性質(zhì)可得方程組,求得公差.【詳解】等差數(shù)列中,,,由通項(xiàng)公式可得解得故選:A3、A【解析】由二項(xiàng)展開的中間項(xiàng)或中間兩項(xiàng)二項(xiàng)式系數(shù)最大可得解.【詳解】因?yàn)槎?xiàng)式展開式一共11項(xiàng),其中中間項(xiàng)的二項(xiàng)式系數(shù)最大,易知當(dāng)r=5時(shí),最大,即二項(xiàng)展開式中,二項(xiàng)式系數(shù)最大的為第6項(xiàng).故選:A4、A【解析】與已知直線平行,與橢圓相切的直線有二條,一條距離最短,一條距離最長,利用相切,求出直線的常數(shù)項(xiàng),再計(jì)算平行線間的距離即可.【詳解】設(shè)與已知直線平行,與橢圓相切的直線為,則所以所以橢圓上點(diǎn)P到直線的最短距離為故選:A5、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準(zhǔn)線方程為,所以.故選:B6、B【解析】當(dāng)可求得;當(dāng)時(shí),可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式可推導(dǎo)得到,由求得后,利用可求得結(jié)果.【詳解】當(dāng)時(shí),,解得:;當(dāng)時(shí),由得:,即,,數(shù)列是以為首項(xiàng),為公差的等差數(shù)列,,解得:,,經(jīng)檢驗(yàn):滿足,,故選:B.7、B【解析】將樣本中的數(shù)據(jù)由小到大進(jìn)行排列,利用中位數(shù)的定義可得結(jié)果.【詳解】將樣本中的數(shù)據(jù)由小到大進(jìn)行排列,依次為:、、、、、、、、、,因此,這組數(shù)據(jù)的中位數(shù)為.故選:B.8、B【解析】根據(jù)二項(xiàng)式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B9、C【解析】利用數(shù)量積運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運(yùn)算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點(diǎn)睛】本題考查數(shù)量積運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運(yùn)算性質(zhì),考查推理能力與計(jì)算能力,屬于中檔題10、D【解析】由題意可得首先求出直線上的一個(gè)向量,即可得到它的一個(gè)方向向量,再利用平面向量共線(平行)的坐標(biāo)表示即可得出答案【詳解】∵在直線上,∴直線的一個(gè)方向向量,又∵,∴是直線的一個(gè)方向向量故選:D11、B【解析】作出給定不等式表示的平面區(qū)域,再借助幾何意義即可求出的最大值.【詳解】畫出不等式組表示的平面區(qū)域,如圖中陰影,其中,,目標(biāo)函數(shù),即表示斜率為2,縱截距為的平行直線系,作出直線,平移直線到直線,使其過點(diǎn)A時(shí),的縱截距最小,最大,則,所以的最大值為1.故選:B12、A【解析】根據(jù)導(dǎo)數(shù)得出在的單調(diào)性,進(jìn)而由單調(diào)性得出大小關(guān)系.【詳解】因?yàn)椋栽谏蠁握{(diào)遞增.因?yàn)?,所以,而,所?因?yàn)?,且,所?即.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、(1)在單調(diào)遞增,單調(diào)遞減;(2)詳見解析.【解析】(1)求得,利用和即可求得函數(shù)的單調(diào)性區(qū)間;(2)求得函數(shù)的解析式,求,對的情況進(jìn)行分類討論得到函數(shù)有極大值的情形,再結(jié)合極大值點(diǎn)的定義進(jìn)行替換、即可求解.【詳解】(1)由題意,函數(shù),則,當(dāng)時(shí),令,所以函數(shù)單調(diào)遞增;當(dāng)時(shí),令,即,解得或,令,即,解得,所以函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間中單調(diào)遞減,當(dāng)時(shí),令,即,解得或,令,即,解得,所以函數(shù)在單調(diào)遞增,在單調(diào)遞減.(2)由函數(shù),則,令,可得令,解得,當(dāng)時(shí).,函數(shù)在單調(diào)遞增,此時(shí),所以,函數(shù)在上單調(diào)遞增,此時(shí)不存在極大值,當(dāng)時(shí),令解得,令,解得,所以上單調(diào)遞減,在上單調(diào)遞增,因?yàn)樵谏洗嬖跇O大值,所以,解得,因?yàn)?,易證明,存在時(shí),,存在使得,當(dāng)在區(qū)間上單調(diào)遞增,在區(qū)間單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得極大值,即,,由,所以【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,以及不等式的證明,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計(jì)算能力,對于此類問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題14、.【解析】根據(jù)題意轉(zhuǎn)化為,恒成立,得到,即可求解.【詳解】由題意,命題,成立為真命題,即,恒成立,當(dāng)時(shí),,所以,即實(shí)數(shù)的取值范圍.故答案為:.15、2【解析】求出圓心和雙曲線的漸近線方程,即得解.【詳解】解:由題得圓的圓心為,雙曲線的漸近線方程為,即.所以圓心到雙曲線漸近線的距離為.故答案為:216、4【解析】設(shè)平面,在平面內(nèi)作于點(diǎn)O,在平面內(nèi)過點(diǎn)O作,設(shè)OM是的角平分線,過棱m上一點(diǎn)P作,則過點(diǎn)O在平面OMQP上存在2條直線l,使得直線l與OB、OA成,直線l與平面且與平面,所成的角都是30°,在的補(bǔ)角一側(cè)也存在2條滿足條件的直線l,由此可得答案.【詳解】解:設(shè)平面,在平面內(nèi)作于點(diǎn)O,在平面內(nèi)過點(diǎn)O作,因?yàn)槠矫妫?,設(shè)OM是的角平分線,則,過棱m上一點(diǎn)P作,則過點(diǎn)O在平面OMQP上存在2條直線l,使得直線l與OB、OA成,此時(shí)直線l與平面且與平面,所成的角都是30°,同理,在的補(bǔ)角一側(cè)也存在2條滿足條件的直線l,所以這樣的直線l有4條,故答案為:4.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)答案見解析【解析】(1)由,變形為求解直線過的定點(diǎn),即可得解;(2)法一:由圓心和連線與直線垂直求解;法二:由圓心到直線距離最大時(shí)求解.【小問1詳解】解:,所以,令,所以直線經(jīng)過定點(diǎn),圓可變形為,因?yàn)?,所以定點(diǎn)在圓內(nèi),所以直線和圓C相交,有兩個(gè)交點(diǎn);【小問2詳解】法一:圓心為,到距離為,圓心與連線的斜率為,最短弦與圓心和的連線垂直,所以,所以最短弦長為,直線的方程為法二:圓心到直線距離:,,要求d的最大值,則,當(dāng)且僅當(dāng)時(shí),d的最大值為,所以最短弦長為,直線的方程為.18、(1)證明見解析(2)【解析】(1)化簡得到,由此證得數(shù)列為等差數(shù)列.(2)先求得,然后利用錯(cuò)位相減求和法求得.【小問1詳解】.又?jǐn)?shù)列是以1為首項(xiàng),4為公差等差數(shù)列.【小問2詳解】由(1)知:,則數(shù)列的通項(xiàng)公式為,則,①,②,①-②得:,,,,.19、(1)(2)【解析】(1)由離心率得關(guān)系,短軸求出,結(jié)合關(guān)系式解出,可得橢圓的標(biāo)準(zhǔn)方程;(2)設(shè),,過EF的方程為,聯(lián)立直線與橢圓方程得韋達(dá)定理,結(jié)合斜率定義和化簡得,由在橢圓上代換得,聯(lián)立韋達(dá)定理可求,進(jìn)而得解;【小問1詳解】由題意可得,,,又,解得所以橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】由(1)得,,顯然直線EF的斜率存在且不為0,設(shè),,則,都不為和0設(shè)直線EF的方程為,由消去y得,顯然,則,因?yàn)?,所以,等式兩邊平方得①又因?yàn)椋跈E圓上,所以,②將②代入①可得,即,所以,即,解得或(舍去,此時(shí))所以直線EF的方程為20、(1)(2)【解析】(1)根據(jù)正弦定理化邊為角,結(jié)合三角變換可求答案;(2)根據(jù)余弦定理先求,再用余弦定理求解.【小問1詳解】∵,∴由正弦定理可得,∴,∴.∵,∴,即.∵,∴.【小問2詳解】設(shè),則,即,解得或(舍去),∴.∵,∴.21、(1);(2).【解析】(1)根據(jù)題意計(jì)算得到,得到橢圓方程.(2)設(shè)直線的方程為,聯(lián)立方程,根據(jù)韋達(dá)定理得到,,表示出,解得答案.【詳解】(1)依題意有解得所以橢圓的標(biāo)準(zhǔn)方程是.(2)由題意直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026浙江嘉興海寧市遠(yuǎn)達(dá)教育集團(tuán)招聘備考題庫(十)及一套參考答案詳解
- 2026貴州省審計(jì)廳所屬事業(yè)單位招聘2人備考題庫帶答案詳解
- 2026陜西省公務(wù)員招錄備考題庫(5272人)及完整答案詳解1套
- 隋唐時(shí)期介紹
- 職業(yè)健康檔案電子化管理的人才培養(yǎng)體系
- 職業(yè)健康師資教學(xué)檔案管理
- 職業(yè)健康促進(jìn)的衛(wèi)生資源經(jīng)濟(jì)學(xué)
- 職業(yè)健康與職業(yè)康復(fù)的質(zhì)量控制體系
- 銅陵2025年安徽銅陵經(jīng)濟(jì)技術(shù)開發(fā)區(qū)招聘工作人員12人筆試歷年參考題庫附帶答案詳解
- 衢州2025年浙江衢州市柯城區(qū)招聘公辦幼兒園臨聘保育員48人筆試歷年參考題庫附帶答案詳解
- 安全生產(chǎn)目標(biāo)及考核制度
- (2026版)患者十大安全目標(biāo)(2篇)
- 2026年北大拉丁語標(biāo)準(zhǔn)考試試題
- 臨床護(hù)理操作流程禮儀規(guī)范
- 2025年酒店總經(jīng)理年度工作總結(jié)暨戰(zhàn)略規(guī)劃
- 空氣栓塞課件教學(xué)
- 2025年國家市場監(jiān)管總局公開遴選公務(wù)員面試題及答案
- 肌骨康復(fù)腰椎課件
- 2025年10月自考04184線性代數(shù)經(jīng)管類試題及答案含評(píng)分參考
- 西交利物浦大學(xué)自主招生申請個(gè)人陳述示例范文
- GA 1812.1-2024銀行系統(tǒng)反恐怖防范要求第1部分:人民幣發(fā)行庫
評(píng)論
0/150
提交評(píng)論