2026屆湖北省宜昌市協(xié)作體數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第1頁
2026屆湖北省宜昌市協(xié)作體數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第2頁
2026屆湖北省宜昌市協(xié)作體數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第3頁
2026屆湖北省宜昌市協(xié)作體數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第4頁
2026屆湖北省宜昌市協(xié)作體數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆湖北省宜昌市協(xié)作體數(shù)學(xué)高二上期末調(diào)研模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,若直線上存在點(diǎn)P,滿足,則l的傾斜角的取值范圍是()A. B.C D.2.已知直線與直線垂直,則()A. B.C. D.3.已知函數(shù)在區(qū)間上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.4.方程表示的曲線是()A.一個橢圓和一條直線 B.一個橢圓和一條射線C.一條射線 D.一個橢圓5.已知向量,,且與互相垂直,則k的值是().A.1 B.C. D.6.在正四面體中,棱長為2,且E是棱AB中點(diǎn),則的值為A. B.1C. D.7.橢圓的短軸長為()A.8 B.2C.4 D.8.已知命題:,;命題:,使,若“”為假命題,則實數(shù)的取值范圍是()A. B.C. D.9.實數(shù)m變化時,方程表示的曲線不可以是()A.直線 B.圓C橢圓 D.雙曲線10.“且”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件11.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.中共一大會址、江西井岡山、貴州遵義、陜西延安是中學(xué)生的幾個重要的研學(xué)旅行地.某中學(xué)在校學(xué)生人,學(xué)校團(tuán)委為了了解本校學(xué)生到上述紅色基地研學(xué)旅行的情況,隨機(jī)調(diào)查了名學(xué)生,其中到過中共一大會址或井岡山研學(xué)旅行的共有人,到過井岡山研學(xué)旅行的人,到過中共一大會址并且到過井岡山研學(xué)旅行的恰有人,根據(jù)這項調(diào)查,估計該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生大約有()人A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點(diǎn)與直線平行的直線的方程是________.14.已知.若在定義域內(nèi)單調(diào)遞增,則實數(shù)的取值范圍為______.15.若等比數(shù)列的前n項和為,且,則__________.16.命題“若,則”的逆否命題為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,討論函數(shù)的單調(diào)性;(2)當(dāng)時,求在區(qū)間上的最小值和最大值.18.(12分)已知數(shù)列的前n項和為滿足(1)求證:是等比數(shù)列,并求數(shù)列通項公式;(2)若,數(shù)列的前項和為.求證:19.(12分)已知橢圓經(jīng)過點(diǎn),且離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知點(diǎn)A,B是橢圓C的上,下頂點(diǎn),點(diǎn)P是直線上的動點(diǎn),直線PA與橢圓C的另一交點(diǎn)為E,直線PB與橢圓C的另一交點(diǎn)為F.證明:直線EF過定點(diǎn)20.(12分)已知橢圓的離心率為,且其左頂點(diǎn)到右焦點(diǎn)的距離為.(1)求橢圓的方程;(2)設(shè)點(diǎn)、在橢圓上,以線段為直徑的圓過原點(diǎn),試問是否存在定點(diǎn),使得到直線的距離為定值?若存在,請求出點(diǎn)坐標(biāo);若不存在,請說理由.21.(12分)城南公園種植了4棵棕櫚樹,各棵棕櫚樹成活與否是相互獨(dú)立的,成活率為p,設(shè)為成活棕櫚樹的株數(shù),數(shù)學(xué)期望.(1)求p的值并寫出的分布列;(2)若有2棵或2棵以上的棕櫚樹未成活,則需要補(bǔ)種,求需要補(bǔ)種棕櫚樹的概率.22.(10分)已知橢圓:經(jīng)過點(diǎn),設(shè)右焦點(diǎn)F,橢圓上存在點(diǎn)Q,使QF垂直于x軸且.(1)求橢圓的方程;(2)過點(diǎn)的直線與橢圓交于D,G兩點(diǎn).是否存在直線使得以DG為直徑的圓過點(diǎn)E(-1,0)?若存在,求出直線的方程,若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意,求得直線恒過的定點(diǎn),數(shù)形結(jié)合只需求得線段與直線有交點(diǎn)時的斜率,結(jié)合斜率和傾斜角的關(guān)系即可求得結(jié)果.【詳解】對直線,變形為,故其恒過定點(diǎn),若直線存在點(diǎn)P,滿足,只需直線與線段有交點(diǎn)即可.數(shù)形結(jié)合可知,當(dāng)直線過點(diǎn)時,其斜率取得最大值,此時,對應(yīng)傾斜角;當(dāng)直線過點(diǎn)時,其斜率取得最小值,此時,對應(yīng)傾斜角為.根據(jù)斜率和傾斜角的關(guān)系,要滿足題意,直線的傾斜角的范圍為:.故選:A.2、C【解析】根據(jù)兩直線垂直可直接構(gòu)造方程求得結(jié)果.【詳解】由兩直線垂直得:,解得:.故選:C.3、D【解析】由在上恒成立,再轉(zhuǎn)化為求函數(shù)的取值范圍可得【詳解】由已知,在上是增函數(shù),則在上恒成立,即,,當(dāng)時,,所以故選:D4、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個橢圓或一條直線.故選:A.5、D【解析】利用向量的數(shù)量積為0可求的值.【詳解】因與互相垂直,故,故即,故.故選:D.6、A【解析】根據(jù)題意,由正四面體的性質(zhì)可得:,可得,由E是棱中點(diǎn),可得,代入,利用數(shù)量積運(yùn)算性質(zhì)即可得出.【詳解】如圖所示由正四面體的性質(zhì)可得:可得:是棱中點(diǎn)故選:【點(diǎn)睛】本題考查空間向量的線性運(yùn)算,考查立體幾何中的垂直關(guān)系,考查轉(zhuǎn)化與化歸思想,屬于中等題型.7、C【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,進(jìn)而得出短軸長.【詳解】由,可得,所以短軸長為.故選:C.8、D【解析】根據(jù)題意,判斷命題和的真假性,結(jié)合判別式與二次函數(shù)恒成立問題,即可求解.【詳解】根據(jù)題意,由為假命題可得“”為真命題,即p、q都為真命題,故,解得故選:D9、B【解析】根據(jù)的取值分類討論說明【詳解】時方程化為,為直線,時,方程化為,為橢圓,時,方程化為,為雙曲線,而,因此曲線不可能是圓故選:B10、B【解析】根據(jù)充分條件、必要條件的定義和橢圓的標(biāo)椎方程,判斷可得出結(jié)論.【詳解】解:充分性:當(dāng),方程表示圓,充分性不成立;必要性:若方程表示橢圓,則,必有且,必要性成立,因此,“且”是“方程表示橢圓”的必要不充分條件.故選:B.11、B【解析】因但12、B【解析】作出韋恩圖,設(shè)調(diào)查的學(xué)生中去過中共一大會址研學(xué)旅行的學(xué)生人數(shù)為,根據(jù)題意求出的值,由此可得出該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生人數(shù).【詳解】如下圖所示,設(shè)調(diào)查的學(xué)生中去過中共一大會址研學(xué)旅行的學(xué)生人數(shù)為,由題意可得,解的,因此,該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生的人數(shù)為.故選:B.【點(diǎn)睛】本題考查韋恩圖的應(yīng)用,同時也考查了利用分層抽樣求樣本容量,考查計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)給定條件設(shè)出所求直線方程,利用待定系數(shù)法求解即得.【詳解】設(shè)與直線平行的直線的方程為,而點(diǎn)在直線上,于是得,解得,所以所求的直線的方程為.故答案為:14、【解析】將問題轉(zhuǎn)化為在上恒成立,再分離參數(shù)轉(zhuǎn)化為求函數(shù)的最值問題即可得到實數(shù)的取值范圍【詳解】因為,所以;因為在內(nèi)單調(diào)遞增,所以在上恒成立,即在上恒成立,因為,所以.故答案為:15、5【解析】根據(jù)題意和等比數(shù)列的求和公式,求得,結(jié)合求和公式,即可求解.【詳解】因為,若時,可得,故,所以,化簡得,整理得,解得或,因為,解得,所以.故答案為:.16、若,則【解析】否定原命題條件和結(jié)論,并將條件與結(jié)論互換,即可寫出逆否命題.【詳解】由逆否命題的定義知:原命題的逆否命題為“若,則”.故答案為:若,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在和上單調(diào)遞增,在上單調(diào)遞減.(2)答案見解析.【解析】(1)求解導(dǎo)函數(shù),并求出的兩根,得和的解集,從而得函數(shù)單調(diào)性;(2)由(1)得函數(shù)的單調(diào)性,從而得最小值,計算,再分類討論與兩種情況下的最大值.【小問1詳解】函數(shù)定義域為,,時,或,因為,所以,時,或,時,,所以函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】因為,由(1)知,在上單調(diào)遞減,在上單調(diào)遞增,所以最小值為,又因為,當(dāng)時,,此時最小值為,最大值為;當(dāng)時,,此時最小值為,最大值為.【點(diǎn)睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點(diǎn),對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用18、(1)證明見解析,(2)證明見解析【解析】(1)令可求得的值,令,由可得,兩式作差可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定該數(shù)列的首項和公比,可求得數(shù)列的通項公式;(2)求得,利用錯位相減法可求得,結(jié)合數(shù)列的單調(diào)性可證得結(jié)論成立.【小問1詳解】證明:當(dāng)時,,解得,當(dāng)時,由可得,上述兩個等式作差得,所以,,則,因為,則,可得,,,以此類推,可知對任意的,,所以,,因此,數(shù)列是等比數(shù)列,且首項為,公比為,所以,,解得.【小問2詳解】證明:,則,其中,所以,數(shù)列為單調(diào)遞減數(shù)列,則,,,上式下式,得,所以,,因此,.19、(1);(2)證明見解析.【解析】(1)根據(jù)題意,列出的方程組,通過解方程組,即可求出答案.(2)法一:設(shè),,;當(dāng)時,根據(jù)點(diǎn)的坐標(biāo)寫出直線PA的方程,與橢圓方程聯(lián)立,可求出點(diǎn)的坐標(biāo);同理可求出點(diǎn)的坐標(biāo),然后即可求出直線EF的方程,從而證明直線EF過定點(diǎn).法二:首先根據(jù)時直線EF的方程為,可判斷出直線EF過的定點(diǎn)M必在y軸上,設(shè)為;然后同方法一,求出點(diǎn),的坐標(biāo),根據(jù),即可求出的值.【小問1詳解】由題意,知,解得,所以橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】法一:設(shè),,,當(dāng)時,直線PA的方程為,由,得解得,所以.所以同理可得所以直線EF的斜率為,所以直線EF的方程為,整理得,所以直線EF過定點(diǎn)當(dāng)時,點(diǎn)E,F(xiàn)在y軸上,EF的方程為,顯然過點(diǎn)綜上,直線EF過定點(diǎn)法二:當(dāng)點(diǎn)P在y軸上時,E,F(xiàn)分別與B,A重合,直線EF的方程為,若直線EF過定點(diǎn)M,則M必在y軸上,可設(shè)當(dāng)點(diǎn)P不在y軸上時,設(shè),,,則直線PA的方程為,由,得,解得,所以,所以,同理可得,所以,因為E,F(xiàn),M三點(diǎn)共線,所以,所以,整理得,因為,所以,解得,即所以直線EF過定點(diǎn)20、(1);(2)存在,.【解析】(1)由題設(shè)可知求出,再結(jié)合,從而可求出橢圓的方程,(2)①若直線與軸垂直,由對稱性可知,代入橢圓方程可求得結(jié)果,②若直線不與軸垂直,設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立方程組,消去,然后利用根與系數(shù)的關(guān)系,設(shè),,再由條件,得,從而得,再利用點(diǎn)到直線的距離公式可求得結(jié)果【詳解】(1)由題設(shè)可知解得,,,所以橢圓的方程為:;(2)設(shè),,①若直線與軸垂直,由對稱性可知,將點(diǎn)代入橢圓方程,解得,原點(diǎn)到該直線的距離;②若直線不與軸垂直,設(shè)直線的方程為,由消去得,則由條件,即,由韋達(dá)定理得,整理得,則原點(diǎn)到該直線的距離;故存在定點(diǎn),使得到直線的距離為定值.21、(1),分布列見解析;(2).【解析】(1)根據(jù)二項分布知識即可求解;(2)將補(bǔ)種棕櫚樹的概率轉(zhuǎn)化為成活的概率,結(jié)合概率加法公式即可求解.【小問1詳解】由題意知,,又,所以,故未成活率為,由于所有可能的取值為0,1,2,3,4,所以,,,,,則的分布列為01234【小問2詳解】記“需要補(bǔ)種棕櫚樹”為事件A,由(1)得,,所以需要補(bǔ)種棕櫚樹的概率為.22、(1);(2)存在,或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論