版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆安徽省六安市舒城中學高二數學第一學期期末復習檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某高中從3名男教師和2名女教師中選出3名教師,派到3個不同的鄉(xiāng)村支教,要求這3名教師中男女都有,則不同的選派方案共有()種A.9 B.36C.54 D.1082.函數,若實數是函數的零點,且,則()A. B.C. D.無法確定3.與直線關于軸對稱的直線的方程為()A. B.C. D.4.兩個圓和的位置是關系是()A.相離 B.外切C.相交 D.內含5.已知直線與垂直,則為()A.2 B.C.-2 D.6.某商場為了解銷售活動中某商品銷售量與活動時間之間的關系,隨機統計了某次銷售活動中的商品銷售量與活動時間,并制作了下表:活動時間銷售量由表中數據可知,銷售量與活動時間之間具有線性相關關系,算得線性回歸方程為,據此模型預測當時,的值為()A B.C. D.7.《鏡花緣》是清代文人李汝珍創(chuàng)作的長篇小說,書中有這樣一個情節(jié):一座樓閣到處掛滿了五彩繽紛的大小燈球,燈球有兩種,一種是大燈下綴2個小燈,另一種是大燈下綴4個小燈,大燈共360個,小燈共1200個.若在這座樓閣的燈球中,隨機選取一個燈球,則這個燈球是大燈下綴4個小燈的概率為A. B.C. D.8.若存在兩個不相等的正實數x,y,使得成立,則實數m的取值范圍是()A. B.C. D.9.如圖,四棱錐的底面是矩形,設,,,是棱上一點,且,則()A. B.C. D.10.若,滿足約束條件則的最大值是A.-8 B.-3C.0 D.111.在條件下,目標函數的最大值為2,則的最小值是()A.20 B.40C.60 D.8012.為了防控新冠病毒肺炎疫情,某市疾控中心檢測人員對外來入市人員進行核酸檢測,人員甲、乙均被檢測.設命題為“甲核酸檢測結果為陰性”,命題為“乙核酸檢測結果為陰性”,則命題“至少有一位人員核酸檢測結果不是陰性”可表示為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設命題:,,則為______.14.曲線在處的切線方程為______.15.由曲線圍成的圖形的面積為_______________16.已知,分別是橢圓和雙曲線的離心率,,是它們的公共焦點,M是它們的一個公共點,且,則的最大值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)定義:設是空間的一個基底,若向量,則稱有序實數組為向量在基底下的坐標.已知是空間的單位正交基底,是空間的另一個基底,若向量在基底下的坐標為(1)求向量在基底下的坐標;(2)求向量在基底下的模18.(12分)已知雙曲線(1)若,求雙曲線的焦點坐標、頂點坐標和漸近線方程;(2)若雙曲線的離心率為,求實數的取值范圍19.(12分)已知橢圓的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.(1)求橢圓C的標準方程;(2)設斜率為k的直線與橢圓C交于兩點,O為坐標原點,若的面積為定值,判斷是否為定值,如果是,求出該定值;如果不是,說明理由.20.(12分)已知橢圓:的左、右焦點分別為,,離心率為,且過點.(1)求橢圓的標準方程;(2)若過點的直線與橢圓相交于,兩點(A、B非橢圓頂點),求的最大值.21.(12分)曲線與曲線在第一象限的交點為.曲線是()和()組成的封閉圖形.曲線與軸的左交點為、右交點為.(1)設曲線與曲線具有相同的一個焦點,求線段的方程;(2)在(1)的條件下,曲線上存在多少個點,使得,請說明理由.(3)設過原點的直線與以為圓心的圓相切,其中圓的半徑小于1,切點為.直線與曲線在第一象限的兩個交點為..當對任意直線恒成立,求的值.22.(10分)已知橢圓,其上頂點與左右焦點圍成的是面積為的正三角形.(1)求橢圓的方程;(2)過橢圓的右焦點的直線(的斜率存在)交橢圓于兩點,弦的垂直平分線交軸于點,問:是否是定值?若是,求出定值:若不是,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據給定條件利用排列并結合排除法列式計算作答.【詳解】從含有3名男教師和2名女教師的5名教師中任選3名教師,派到3個不同的鄉(xiāng)村支教,不同的選派方案有種,選出3名教師全是男教師的不同的選派方案有種,所以3名教師中男女都有的不同的選派方案共有種故選:C2、A【解析】利用函數在遞減求解.【詳解】因為函數在遞減,又實數是函數的零點,即,又因為,所以,故選:A3、D【解析】點關于x軸對稱,橫坐標不變,縱坐標互為相反數,據此即可求解.【詳解】設(x,y)是與直線關于軸對稱的直線上任意一點,則(x,-y)在上,故,∴與直線關于軸對稱的直線的方程為.故選:D.4、C【解析】根據圓的方程得出兩圓的圓心和半徑,再得出圓心距離與兩圓的半徑的關系,可得選項.【詳解】圓的圓心為,半徑,的圓心為,半徑,則,所以兩圓的位置是關系是相交,故選:C.【點睛】本題考查兩圓的位置關系,關鍵在于運用判定兩圓的位置關系一般利用幾何法.即比較圓心之間的距離與半徑之和、之差的大小關系,屬于基礎題.5、A【解析】利用一般式中直線垂直的系數關系列式求解.【詳解】因為直線與垂直,故選:A.6、C【解析】求出樣本中心點的坐標,代入回歸直線方程,求出的值,再將代入回歸方程即可得解.【詳解】由表格中的數據可得,,將樣本中心點的坐標代入回歸直線方程可得,解得,所以,回歸直線方程為,故當時,.故選:C.7、B【解析】設大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據題意求得,再由古典概型及其概率的公式,即可求解【詳解】設大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據題意可得,解得,則燈球的總數為個,故這個燈球是大燈下綴4個小燈的概率為,故選B【點睛】本題主要考查了古典概型及其概率的計算,其中解答中根據題意列出方程組,求得兩種燈球的數量是解答的關鍵,著重考查了運算與求解能力,屬于基礎題8、D【解析】將給定等式變形并構造函數,由函數的圖象與垂直于y軸的直線有兩個公共點推理作答.【詳解】因,令,則存在兩個不相等的正實數x,y,使得,即存在垂直于y軸的直線與函數的圖象有兩個公共點,,,而,當時,,函數在上單調遞增,則垂直于y軸的直線與函數的圖象最多只有1個公共點,不符合要求,當時,由得,當時,,當時,,即函數在上單調遞減,在上單調遞增,,令,,令,則,即在上單調遞增,,即,在上單調遞增,則有當時,,,而函數在上單調遞增,取,則,而,因此,存在垂直于y軸的直線(),與函數的圖象有兩個公共點,所以實數m的取值范圍是.故選:D【點睛】思路點睛:涉及雙變量的等式或不等式問題,把雙變量的等式或不等式轉化為一元變量問題求解,途徑都是構造一元函數.9、B【解析】根據空間向量基本定理求解【詳解】由已知故選:B10、C【解析】作出可行域,把變形為,平移直線過點時,最大.【詳解】作出可行域如圖:由得:,作出直線,平移直線過點時,.故選C.【點睛】本題主要考查了簡單線性規(guī)劃問題,屬于中檔題.11、C【解析】首先畫出可行域,找到最優(yōu)解,得到關系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標函數取最大值時必過N點,則則(當且僅當時等號成立)故選:C12、D【解析】表示出和,直接判斷即可.【詳解】命題為“甲核酸檢測結果為陰性”,則命題為“甲核酸檢測結果不是陰性”;命題為“乙核酸檢測結果為陰性”,則命題為“乙核酸檢測結果不是陰性”.故命題“至少有一位人員核酸檢測結果不是陰性”可表示為.故選D.二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】由全稱命題的否定即可得到答案【詳解】根據全稱命題的否定,可得為,【點睛】本題考查了含有量詞的命題否定,屬于基礎題14、【解析】先求出函數的導函數,然后結合導數的幾何意義求解即可.【詳解】解:由,得,則,即當時,,所以切線方程為:,故答案為:.【點睛】本題考查了曲線在某點處的切線方程的求法,屬基礎題.15、【解析】當時,曲線表示的圖形為以為圓心,以為半徑的圓在第一象限的部分,所以面積為,根據對稱性,可知由曲線圍成的圖形的面積為考點:本小題主要考查曲線表示的平面圖形的面積的求法,考查學生分類討論思想的運用和運算求解能力.點評:解決此題的關鍵是看出所求圖形在四個象限內是相同的,然后求出在一個象限內的圖形的面積即可解決問題.16、【解析】利用橢圓、雙曲線的定義以及余弦定理找到的關系,然后利用三角換元求最值即可.【詳解】解析:設橢圓的長半軸為a,雙曲線的實半軸為,半焦距為c,設,,,因為,所以由余弦定理可得,①在橢圓中,,①化簡為,即,②在雙曲線中,,①化簡為,即,③聯立②③得,,即,記,,,則,當且僅當,即,時取等號故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據向量在基底下的坐標為,得出向量在基底下的坐標;(2)根據向量在基底下的坐標直接計算模即可【小問1詳解】因為向量在基底下坐標為,則,所以向量在基底下的坐標為.【小問2詳解】因為向量在基底下的坐標為,所以向量在基底下的模為.18、(1)焦點坐標為,,頂點坐標為,,漸近線方程為;(2).【解析】(1)根據雙曲線方程確定,即可按照概念對應寫出焦點坐標、頂點坐標和漸近線方程;(2)先求(用表示),再根據解不等式得結果.【詳解】(1)當時,雙曲線方程化為,所以,,,所以焦點坐標為,,頂點坐標為,,漸近線方程為.(2)因為,所以,解得,所以實數的取值范圍是【點睛】本題根據雙曲線方程求焦點坐標、頂點坐標和漸近線方程,根據離心率求參數范圍,考查基本分析求解能力,屬基礎題.19、(1)(2)是定值,定值為6【解析】(1)根據題意條件,可直接求出的值,然后再利用條件中、的關系,借助即可求解出、的值,從而得到橢圓方程;(2)根據已知條件設出、所在直線方程,然后與橢圓聯立方程,分別表示出根與系數的關系,再表示出弦長關系,再計算點到直線的距離,把面積用和的式子表示出來,通過給出的面積的值,找到和的等量關系,將等量關系帶入到利用跟與系數關系組合成的中即可得到答案.【小問1詳解】由題意:,由知:,故橢圓C的標準方程為,【小問2詳解】設:,①橢圓.②聯立①②得:,,即∴,O到直線l的距離,∴,∴,即,∴.故為定值6.20、(1)(2)【解析】(1)根據離心率和點在橢圓上建立方程,結合,然后解出方程即可(2)設直線的斜率為,聯立直線與橢圓的方程,然后利用韋達定理表示出,兩點的坐標關系,并表示出為直線斜率的函數,然后求出的最大值【小問1詳解】由橢圓過點,則有:由可得:解得:則橢圓的方程為:【小問2詳解】由(1)得,,已知直線不過橢圓長軸頂點則直線的斜率不為,設直線的方程為:設,,聯立直線方程和橢圓方程整理可得:故是恒成立的根據韋達定理可得:,則有:由,可得:所以的最大值為:21、(1)或;(2)一共2個,理由見解析;(3)答案見解析.【解析】(1)先求曲線的焦點,再求點的坐標,分焦點為左焦點或右焦點,求線段的方程;(2)分點在雙曲線或是橢圓的曲線上,結合條件,說明點的個數;(3)首先設出直線和圓的方程,利用直線與圓相切,以及直線與曲線相交,分別表示,并計算得到的值.【詳解】(1)兩個曲線相同的焦點,,解得:,即雙曲線方程是,橢圓方程是,焦點坐標是,聯立兩個曲線,得,,即,當焦點是右焦點時,線段的方程當焦點時左焦點時,,,線段的方程(2),假設點在曲線上單調遞增∴所以點不可能在曲線上所以點只可能在曲線上,根據得可以得到當左焦點,,同樣這樣的使得不存在所以這樣的點一共2個(3)設直線方程,圓方程為直線與圓相切,所以,,根據得到補充說明:由于直線的曲線有兩個交點,受參數的影響,蘊含著如下關系,∵,當,存在,否則不存在這里可以不需討論,因為題目前假定直線與曲線有兩個交點的大前提,當共焦點時存在不存在.【點睛】關鍵點點睛:本題考查直線與橢圓和雙曲線相交的綜合應用,本題的關鍵是曲線由橢圓和雙曲線構成,所以研究曲線上的點時,需分兩種情況研究問題.22、(1);(2)是定值,定值為4【解析】(1)根據正三角形性質與面積可求得即可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 老年遠程用藥管理技能培訓
- 2026天津城投物業(yè)公司面向集團內部招聘1人備考題庫及答案詳解參考
- 2026年大安市面向上半年應征入伍高校畢業(yè)生公開招聘事業(yè)單位工作人員備考題庫(5人)完整答案詳解
- 老年跌倒預防的慢性病管理結合
- 2026年池州職業(yè)技術學院公開招聘校外兼職授課教師備考題庫及答案詳解(新)
- 2026江西贛州市南康區(qū)糧食收儲公司招聘機電維修員、消防安保人員3人備考題庫參考答案詳解
- 老年跌倒的血壓波動影響分析
- 2025河北省胸科醫(yī)院第二次招聘18人備考題庫及一套參考答案詳解
- 2026年曲靖市馬龍區(qū)事業(yè)單位遴選工作人員備考題庫(3人)及參考答案詳解
- 2026四川雅安康馨商務服務有限公司招聘1人備考題庫及1套參考答案詳解
- 2019-2020學年貴州省貴陽市八年級下學期期末考試物理試卷及答案解析
- 培訓機構轉課協議
- 河道治理、拓寬工程 投標方案(技術方案)
- 創(chuàng)客教室建設方案
- 政治審查表(模板)
- (完整版)南京市房屋租賃合同
- 《最奇妙的蛋》完整版
- SEMI S1-1107原版完整文檔
- 內蒙古衛(wèi)生健康委員會綜合保障中心公開招聘8人模擬預測(共1000題)筆試備考題庫及答案解析
- 2023年中級財務會計各章作業(yè)練習題
- 金屬罐三片罐成型方法與罐型
評論
0/150
提交評論