2026屆吉林省遼源市第五中學數(shù)學高二上期末聯(lián)考試題含解析_第1頁
2026屆吉林省遼源市第五中學數(shù)學高二上期末聯(lián)考試題含解析_第2頁
2026屆吉林省遼源市第五中學數(shù)學高二上期末聯(lián)考試題含解析_第3頁
2026屆吉林省遼源市第五中學數(shù)學高二上期末聯(lián)考試題含解析_第4頁
2026屆吉林省遼源市第五中學數(shù)學高二上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆吉林省遼源市第五中學數(shù)學高二上期末聯(lián)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是一水平放置的青花瓷.它的外形為單葉雙曲面,可看成是雙曲線的一部分繞其虛軸旋轉所形成的曲面,且其外形上下對稱.花瓶的最小直徑為,瓶口直徑為,瓶高為,則該雙曲線的虛軸長為()A. B.C. D.452.已知兩定點和,動點在直線上移動,橢圓C以A,B為焦點且經(jīng)過點P,則橢圓C的短軸的最小值為()A. B.C. D.3.已知數(shù)列滿足,則()A. B.C. D.4.如圖,奧運五環(huán)由5個奧林匹克環(huán)套接組成,環(huán)從左到右互相套接,上面是藍、黑、紅環(huán),下面是黃,綠環(huán),整個造形為一個底部小的規(guī)則梯形.為迎接北京冬奧會召開,某機構定制一批奧運五環(huán)旗,已知該五環(huán)旗的5個奧林匹克環(huán)的內(nèi)圈半徑為1,外圈半徑為1.2,相鄰圓環(huán)圓心水平距離為2.6,兩排圓環(huán)圓心垂直距離為1.1,則相鄰兩個相交的圓的圓心之間的距離為()A. B.2.8C. D.2.95.點在圓上,點在直線上,則的最小值是()A. B.C. D.6.已知點,則直線的傾斜角為()A. B.C. D.7.已知橢圓=1(a>b>0)的右焦點為F,橢圓上的A,B兩點關于原點對稱,|FA|=2|FB|,且·≤a2,則該橢圓離心率的取值范圍是()A.(0,] B.(0,]C.,1) D.,1)8.觀察數(shù)列,(),,()的特點,則括號中應填入的適當?shù)臄?shù)為()A. B.C. D.9.由直線上的點向圓引切線,則切線長的最小值為()A. B.C.4 D.210.若函數(shù)的圖象如圖所示,則函數(shù)的導函數(shù)的圖象可能是()A. B.C D.11.已知集合,,若,則=()A.{1,2,3} B.{1,2,3,4}C.{0,1,2} D.{0,1,2,3}12.,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標系中,若三點、、滿足,則實數(shù)的值為__________.14.某校為了解學生學習的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調查.已知高一被抽取的人數(shù)為,那么高二被抽取的人數(shù)為__.15.若函數(shù)是上的增函數(shù),則實數(shù)的取值范圍是__________.16.已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)求的單調區(qū)間;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方形與梯形所在的平面互相垂直,,,|AB|=|AD|=2,|CD|=4,為的中點(1)求證:平面平面;(2)求二面角的正切值18.(12分)在等差數(shù)列中,(1)求數(shù)列的通項公式;(2)設數(shù)列是首項為1,公比為2的等比數(shù)列,求數(shù)列的前項和.19.(12分)已知數(shù)列的前項和,數(shù)列是各項均為正數(shù)的等比數(shù)列,其中,且成等差數(shù)列.(1)求的通項公式;(2)設,求數(shù)列的前項和.20.(12分)已知橢圓:過點,其左、右頂點分別為,,上頂點為,直線與直線的斜率之積為.(1)求橢圓的方程;(2)如圖,直線:分別與線段(不含端點)和線段的延長線交于,兩點,直線與橢圓的另一交點為,求證:,,三點共線.21.(12分)在等差數(shù)列中,已知公差,前項和(其中)(1)求;(2)求和:22.(10分)某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);(2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?(3)小明打算將四件禮物隨機分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費為45元的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設雙曲線方程為,,由已知可得,并求得雙曲線上一點的坐標,把點的坐標代入雙曲線方程,求解,即可得到雙曲線的虛軸長【詳解】設點是雙曲線與截面的一個交點,設雙曲線的方程為:,花瓶的最小直徑,則,由瓶口直徑為,瓶高為,可得,故,解得,該雙曲線的虛軸長為故選:2、B【解析】根據(jù)題意,點關于直線對稱點的性質,以及橢圓的定義,即可求解.【詳解】根據(jù)題意,設點關于直線的對稱點,則,解得,即.根據(jù)橢圓的定義可知,,當、、三點共線時,長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.3、D【解析】根據(jù)給定條件求出數(shù)列的通項公式,再利用裂項相消法即可計算作答.【詳解】因,則,所以,所以.故選:D4、C【解析】根據(jù)題意作出輔助線直接求解即可.【詳解】如圖所示,由題意可知,在中,取的中點,連接,所以,,又因為,所以,所以即相鄰兩個相交的圓的圓心之間的距離為.故選:C5、B【解析】根據(jù)題意可知圓心,又由于線外一點到已知直線的垂線段最短,結合點到直線的距離公式,即可求出結果.【詳解】由題意可知,圓心,所以圓心到的距離為,所以的最小值為.故選:B.6、A【解析】由兩點坐標,求出直線的斜率,利用,結合傾斜角的范圍即可求解.【詳解】設直線AB的傾斜角為,因為,所以直線AB的斜率,即,因為,所以.故選:A7、B【解析】如圖設橢圓的左焦點為E,根據(jù)題意和橢圓的定義可知,利用余弦定理求出,結合平面向量的數(shù)量積計算即可.【詳解】由題意知,如圖,設橢圓的左焦點為E,則,因為點A、B關于原點對稱,所以四邊形為平行四邊形,由,得,,在中,,所以,由,得,整理,得,又,所以.故選:B8、D【解析】利用觀察法可得,即得.【詳解】由題可得數(shù)列的通項公式為,∴.故選:D9、D【解析】切點與圓心的連線垂直于切線,切線長轉化為直線上點與圓心連線和半徑的關系,利用點到直線的距離公式求出圓心與直線上點距離的最小值,結合勾股定理即可得出結果.【詳解】設為直線上任意一點,,切線長的最小值為:,故選:D.10、C【解析】由函數(shù)的圖象可知其單調性情況,再由導函數(shù)與原函數(shù)的關系即可得解.【詳解】由函數(shù)的圖象可知,當時,從左向右函數(shù)先增后減,故時,從左向右導函數(shù)先正后負,故排除AB;當時,從左向右函數(shù)先減后增,故時,從左向右導函數(shù)先負后正,故排除D.故選:C.11、D【解析】根據(jù)題意,解不等式求出集合,由,得,進而求出,從而可求出集合,最后根據(jù)并集的運算即可得出答案.【詳解】解:由題可知,,而,即,解得:,又由于,得,因為,則,所以,解得:,所以,所以.故選:D.【點睛】本題考查集合的交集的定義和并集運算,屬于基礎題.12、B【解析】求出,然后可得答案.【詳解】,所以故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】分析可知,結合空間向量數(shù)量積的坐標運算可求得結果.【詳解】由已知可得,,因為,則,即,解得.故答案為:.14、【解析】利用分層抽樣可求得的值,再利用分層抽樣可求得高二被抽取的人數(shù).【詳解】高一年級抽取的人數(shù)為:人,則,則高二被抽取的人數(shù),故答案為:.15、【解析】由題意知在上恒成立,從而結合一元二次不等式恒成立問題,可列出關于的不等式,進而可求其取值范圍.【詳解】解:由題意知,知在上恒成立,則只需,解得.故答案為:.【點睛】本題考查了不等式恒成立問題,考查了運用導數(shù)探究函數(shù)的單調性.一般地,由增函數(shù)可得導數(shù)不小于零,由減函數(shù)可得導數(shù)不大于零.對于一元二次不等式在上恒成立問題,如若在上恒成立,可得;若在上恒成立,可得.16、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導后,令求得兩根,分別在、和三種情況下根據(jù)導函數(shù)的正負得到函數(shù)的單調區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當時,若和時,;若時,;的單調遞增區(qū)間為,;單調遞減區(qū)間為;②當時,在上恒成立,的單調遞增區(qū)間為,無單調遞減區(qū)間;③當時,若和時,;若時,;的單調遞增區(qū)間為,;單調遞減區(qū)間為;綜上所述:當時,的單調遞增區(qū)間為,;單調遞減區(qū)間為;當時,的單調遞增區(qū)間為,無單調遞減區(qū)間;當時,的單調遞增區(qū)間為,;單調遞減區(qū)間為.【點睛】本題考查利用導數(shù)的幾何意義求解曲線在某一點處的切線方程、利用導數(shù)討論含參數(shù)函數(shù)的單調區(qū)間的問題,屬于常考題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)證明BC⊥平面BDE即可;(2)以D為原點,DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標系D-xyz,求平面BMD和平面BCD的法向量,利用法向量的求二面角的余弦,再求正切﹒【小問1詳解】∵ADEF為正方形∴ED⊥AD又∵正方形ADEF與梯形ABCD所在的平面互相垂直,且ED?平面ADEF∴ED⊥平面ABCD∵BC?平面ABCD∴ED⊥BC在直角梯形ABCD中,|AB|=|AD|=2,|CD|=4,則,|BD|=2,在△BCD中,,∴BC⊥BD∵DE∩BD=D,DE與BD平面BDE,∴BC⊥平面BDE又∵BC?平面BEC∴平面BDE⊥平面BEC;【小問2詳解】由(1)知ED⊥平面ABCD∵CD平面ABCD,∴CD⊥ED,∴DA,DC,DE三線兩兩垂直,故以D為原點,DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標系D-xyz:則,則設為平面BDM的法向量,則,取,取平面BCD的法向量為,設二面角的大小為θ,則,∴.18、(1)(2)【解析】(1)根據(jù)等差數(shù)列條件列方程,即可求通項公式;(2)先由等比數(shù)列通項公式求出,解得,分組求和即可.【小問1詳解】設等差數(shù)列的公差為,則,∴,由,∴,∴數(shù)列的通項公式為.【小問2詳解】∵數(shù)列是首項為1,公比為2的等比數(shù)列,∴,即,∴,∴.19、(1),;(2).【解析】(1)利用求出數(shù)列的通項,再求出等比數(shù)列的公比即得解;(2)求出,再利用錯位相減法求解.【小問1詳解】解:,.當時,,適合..設等比數(shù)列公比為,,,即,或(舍去),.【小問2詳解】解:,,,上述兩式相減,得,所以所以.20、(1);(2)證明見解析.【解析】(1)由和,聯(lián)立求解;(2)由(1)易得直線:,直線:,,分別與x=t聯(lián)立,求得M,N坐標,設,利用,得到,然后兩邊乘以,結合點P在橢圓上化簡得到即可,【詳解】(1)在橢圓中,,,,則,,由題意得:,又,解得,,所以橢圓的方程為.(2)由(1)可知,,,,則直線:,直線:,由題意,,聯(lián)立,同理聯(lián)立,設,則①,且點滿足:,即,兩邊乘以,可得:,代入①得:,而,則,所以,,三點共線.21、(1)12(2)18【解析】(1)根據(jù)已知的,利用等差數(shù)列的通項公式和前n項和公式即可列式求解;(2)由第(1)問中求解出的的通項公式,要求前12項絕對值的和,可以發(fā)現(xiàn),該數(shù)列前6項為正項,后6項為負項,因此在算和的時候,后6項和可以取原通項公式的相反數(shù)即可計算,即為,然后再加上前6項和,即為要求的前12項絕對值的和.【小問1詳解】由題意可得,在等差數(shù)列中,已知公差,前項和所以,解之得,所以n=12【小問2詳解】由(1)可知數(shù)列{an}的通項公式為,所以即22、(1)公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)該公司平均每天的利潤有1000元.(3).【解析】(1)對于平均數(shù),運用平均數(shù)的公式即可;由于中位數(shù)將頻率分布直方圖分成面積相等的兩部分,先確定中位數(shù)位于哪一組,然后建立關于中位數(shù)的方程即可求出.(2)利用每天的總收入減去工資的支出,即可得到公司每天的利潤.(3)該為古典概型,根據(jù)題意分別確定總的基本事件個數(shù),以及事件“快遞費為45元”包括的基本事件個數(shù),即可求出概率.【詳解】(1)每天包裹數(shù)量的平均數(shù)為;或:由圖可知每天攬50、150、250、350、450件的天

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論