版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省明光市二中2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓和雙曲線有共同的焦點(diǎn),分別是它們的在第一象限和第三象限的交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則等于()A.4 B.2C.2 D.32.第24屆冬季奧林匹克運(yùn)動(dòng)會(huì),將在2022年2月4日在中華人民共和國北京市和張家口市聯(lián)合舉行.這是中國歷史上第一次舉辦冬季奧運(yùn)會(huì),北京成為奧運(yùn)史上第一個(gè)舉辦夏季奧林匹克運(yùn)動(dòng)會(huì)和冬季奧林匹克運(yùn)動(dòng)會(huì)的城市.同時(shí)中國也成為第一個(gè)實(shí)現(xiàn)奧運(yùn)“全滿貫”(先后舉辦奧運(yùn)會(huì)、殘奧會(huì)、青奧會(huì)、冬奧會(huì)、冬殘奧會(huì))國家.根據(jù)規(guī)劃,國家體育場(鳥巢)成為北京冬奧會(huì)開、閉幕式的場館.國家體育場“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是離心率相同的橢圓,若由外層橢圓長軸一端點(diǎn)和短軸一端點(diǎn)分別向內(nèi)層橢圓引切線,(如圖),且兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.3.已知直線與直線垂直,則實(shí)數(shù)a為()A. B.或C. D.或4.已知雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C. D.5.已知長方體的底面ABCD是邊長為8的正方形,長方體的高為,則與對(duì)角面夾角的正弦值等于()A. B.C. D.6.已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn)P是橢圓上的動(dòng)點(diǎn),,,則的最小值為()A. B.C D.7.已知函數(shù)(其中)的部分圖像如圖所示,則函數(shù)的解析式為()A. B.C. D.8.設(shè)函數(shù),則()A.1 B.5C. D.09.若直線與圓相交于、兩點(diǎn),且(其中為原點(diǎn)),則的值為()A. B.C. D.10.若直線先向右平移一個(gè)單位,再向下平移一個(gè)單位,然后與圓相切,則c的值為()A.8或-2 B.6或-4C.4或-6 D.2或-811.設(shè),,則與的等比中項(xiàng)為()A. B.C. D.12.在平面直角坐標(biāo)系中,拋物線上點(diǎn)到焦點(diǎn)的距離為3,則焦點(diǎn)到準(zhǔn)線的距離為()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.關(guān)于曲線,則以下結(jié)論正確的個(gè)數(shù)有______個(gè)①曲線C關(guān)于原點(diǎn)對(duì)稱;②曲線C中,;③曲線C是不封閉圖形,且它與圓無公共點(diǎn);④曲線C與曲線有4個(gè)交點(diǎn),這4點(diǎn)構(gòu)成正方形14.已知點(diǎn),拋物線的焦點(diǎn)為,點(diǎn)是拋物線上任意一點(diǎn),則周長的最小值是__________.15.?dāng)?shù)學(xué)家華羅庚說:“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微”,事實(shí)上,很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決.例如:與相關(guān)的代數(shù)問題,可以轉(zhuǎn)化為點(diǎn)與點(diǎn)之間的距離的幾何問題.結(jié)合上述觀點(diǎn):對(duì)于函數(shù),的最小值為______16.直線與圓相交于A,B兩點(diǎn),則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,平面ABC,,,,點(diǎn)D,E分別在棱和棱上,且,,M為棱中點(diǎn)(1)求證:;(2)求直線AB與平面所成角的正弦值18.(12分)已知點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為Q,以Q為圓心的圓與直線相交于A,B兩點(diǎn),且(1)求圓Q的方程;(2)過坐標(biāo)原點(diǎn)O任作一直線交圓Q于C,D兩點(diǎn),求證:為定值19.(12分)已知,是橢圓:的左、右焦點(diǎn),離心率為,點(diǎn)A在橢圓C上,且的周長為.(1)求橢圓C的方程;(2)若B為橢圓C上頂點(diǎn),過的直線與橢圓C交于兩個(gè)不同點(diǎn)P、Q,直線BP與x軸交于點(diǎn)M,直線BQ與x軸交于點(diǎn)N,判斷是否為定值.若是,求出定值,若不是,請(qǐng)說明理由.20.(12分)已知數(shù)列滿足且.(1)證明數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.21.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且短軸長為2.(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點(diǎn)為B,右焦點(diǎn)為F,直線l與橢圓交于M,N兩點(diǎn),問是否存在直線l,使得F為的垂心,若存在,求出直線l的方程;若不存在,說明理由.22.(10分)已知直線經(jīng)過橢圓的右焦點(diǎn),且橢圓C的離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)以橢圓的短軸為直徑作圓,若點(diǎn)M是第一象限內(nèi)圓周上一點(diǎn),過點(diǎn)M作圓的切線交橢圓C于P,Q兩點(diǎn),橢圓C的右焦點(diǎn)為,試判斷的周長是否為定值.若是,求出該定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實(shí)半軸長為,由定義可得,,在中利用余弦定理可得,即可求出結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實(shí)半軸長為,不妨設(shè)在第一象限,根據(jù)橢圓和雙曲線定義,得,,,由可得,又,在中,,即,化簡得,兩邊同除以,得.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查共焦點(diǎn)的橢圓與雙曲線的離心率問題,解題的關(guān)鍵是利用定義以及焦點(diǎn)三角形的關(guān)系列出齊次方程式進(jìn)行求解.2、B【解析】分別設(shè)內(nèi)外層橢圓方程為、,進(jìn)而設(shè)切線、分別為、,聯(lián)立方程組整理并結(jié)合求、關(guān)于a、b、m的關(guān)系式,再結(jié)合已知得到a、b的齊次方程求離心率即可.【詳解】若內(nèi)層橢圓方程為,由離心率相同,可設(shè)外層橢圓方程為,∴,設(shè)切線為,切線為,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)內(nèi)外橢圓的離心率相同設(shè)橢圓方程,并寫出切線方程,聯(lián)立方程結(jié)合及已知條件,得到橢圓參數(shù)的齊次方程求離心率.3、B【解析】由題可得,即得.【詳解】∵直線與直線垂直,∴,解得或.故選:B.4、B【解析】由雙曲線的漸近線方程以及即可求得離心率.【詳解】由已知條件得,∴,∴,∴,∴,故選:.5、A【解析】建立空間直角坐標(biāo)系,結(jié)合空間向量的夾角坐標(biāo)公式即可求出線面角的正弦值.【詳解】連接,建立如圖所示的空間直角坐標(biāo)系∵底面是邊長為8的正方形,,∴,,,因?yàn)?且,所以平面,∴,平面的法向量,∴與對(duì)角面所成角的正弦值為故選:A.6、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當(dāng)且僅當(dāng)時(shí)取等號(hào).【詳解】根據(jù)橢圓的定義可知,,即,因?yàn)?,,所以,?dāng)且僅當(dāng),時(shí)等號(hào)成立.故選:A7、B【解析】根據(jù)題圖有且,結(jié)合五點(diǎn)法求參數(shù),即可得的解析式.【詳解】由圖知:且,則,所以,則,即,又,可得,,則,,又,即有.綜上,.故選:B8、B【解析】由題意結(jié)合導(dǎo)數(shù)的運(yùn)算可得,再由導(dǎo)數(shù)的概念即可得解.【詳解】由題意,所以,所以原式等于.故選:B.9、D【解析】分析出為等腰直角三角形,可得出原點(diǎn)到直線的距離,利用點(diǎn)到直線的距離公式可得出關(guān)于的等式,由此可解得的值.【詳解】圓的圓心為原點(diǎn),由于且,所以,為等腰直角三角形,且圓心到直線的距離為,由點(diǎn)到直線的距離公式可得,解得.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查利用圓周角求參數(shù),解題的關(guān)鍵在于求出弦心距,再利用點(diǎn)到直線的距離公式列方程求解參數(shù).10、A【解析】求出平移后的直線方程,再利用直線與圓相切并借助點(diǎn)到直線距離公式列式計(jì)算作答.【詳解】將直線先向右平移一個(gè)單位,再向下平移一個(gè)單位所得直線方程為,因直線與圓相切,從而得,即,解得或,所以c的值為8或-2.故選:A11、C【解析】利用等比中項(xiàng)的定義可求得結(jié)果.【詳解】由題意可知,與的等比中項(xiàng)為.故選:C.12、D【解析】根據(jù)給定條件求出拋物線C的焦點(diǎn)、準(zhǔn)線,再利用拋物線的定義求出a值計(jì)算作答.【詳解】拋物線的焦點(diǎn),準(zhǔn)線,依題意,由拋物線定義得,解得,所以拋物線焦點(diǎn)到準(zhǔn)線的距離為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)曲線的方程,以及曲線的對(duì)稱性、范圍,結(jié)合每個(gè)選項(xiàng)進(jìn)行逐一分析,即可判斷.【詳解】①將方程中的分別換為,方程不變,故該曲線關(guān)于原點(diǎn)對(duì)稱,故正確;②因?yàn)?,解得或,故,同理可得:,故錯(cuò)誤;③根據(jù)②可知,該曲線不是封閉圖形;聯(lián)立與,可得:,將其視作關(guān)于的一元二次方程,故,所以方程無根,故曲線與沒有交點(diǎn);綜上所述,③正確;④假設(shè)曲線C與曲線有4個(gè)交點(diǎn)且交點(diǎn)構(gòu)成正方形,根據(jù)對(duì)稱性,第一象限的交點(diǎn)必在上,聯(lián)立與可得:,故交點(diǎn)為,而此點(diǎn)坐標(biāo)不滿足,所以這樣的正方形不存在,故錯(cuò)誤;綜上所述,正確的是①③.故答案為:.【點(diǎn)睛】本題考察曲線與方程中利用曲線方程研究曲線性質(zhì),處理問題的關(guān)鍵是把握由曲線方程如何研究對(duì)稱性以及范圍問題,屬困難題.14、##【解析】利用拋物線的定義結(jié)合圖形即得.【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線的方程為,過點(diǎn)作,垂足為,則,所以的周長為,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)等號(hào)成立.故答案為:.15、【解析】根據(jù)題意得,表示點(diǎn)與點(diǎn)與距離之和的最小值,再找對(duì)稱點(diǎn)求解即可.【詳解】函數(shù),表示點(diǎn)與點(diǎn)與距離之和的最小值,則點(diǎn)在軸上,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),所以,所以的最小值為:.故答案為:.16、6【解析】利用弦心距、半徑與弦長的幾何關(guān)系,結(jié)合點(diǎn)線距離公式即可求弦長.【詳解】由題設(shè),圓心為,則圓心到直線距離為,又圓的半徑為,故.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結(jié)論;(2)構(gòu)建空間直角坐標(biāo)系,確定相關(guān)點(diǎn)坐標(biāo),進(jìn)而求的方向向量、面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求直線與平面所成角的正弦值.【小問1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點(diǎn),則,又,則平面,由平面,因此,.【小問2詳解】以為原點(diǎn),以,,為軸、軸、軸的正方向建立空間直角坐標(biāo)系,如圖所示,可得:,,,,,,.∴,,,,設(shè)為面的法向量,則,令得,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.18、(1)(2)證明見解析【解析】(1)先求出點(diǎn)坐標(biāo),然后根據(jù)圓心到直線的距離公式及的值求出半徑即可求得圓的方程.(2)設(shè)出直線方程,聯(lián)立圓和直線方程利用韋達(dá)定理來求解.【小問1詳解】解:點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)Q為由Q到直線的距離,所以所以圓的方程為【小問2詳解】當(dāng)直線CD斜率不存在時(shí),,所以.當(dāng)直線CD斜率存在時(shí),設(shè)為k,則直線為,記,聯(lián)立,得所以,綜上,為定值519、(1)(2)【解析】(1)利用橢圓的定義可得,而離心率,解方程組,即可得解;(2)設(shè)直線的方程為,將其與橢圓的方程聯(lián)立,由,,三點(diǎn)的坐標(biāo)寫出直線,的方程,進(jìn)而知點(diǎn),的坐標(biāo),再結(jié)合韋達(dá)定理,進(jìn)行化簡,即可得解【小問1詳解】解:因?yàn)榈闹荛L為,所以,即,又離心率,所以,,所以,故橢圓的方程為【小問2詳解】解:由題意知,直線的斜率一定不可能為0,設(shè)其方程為,,,,,聯(lián)立,得,所以,,因?yàn)辄c(diǎn)為,所以直線的方程為,所以點(diǎn),,直線的方程為,所以點(diǎn),,所以,即為定值20、(1)證明見解析;(2).【解析】(1)根據(jù)題意可得,根據(jù)等比數(shù)列的定義,即可得證;(2)由(1)可得,可得,利用累加法即可求得數(shù)列的通項(xiàng)公式.【詳解】(1)因?yàn)?,所以,即,所以是首?xiàng)為1公比為3的等比數(shù)列(2)由(1)可知,所以因?yàn)?,所以……,,各式相加得:,又,所以,又?dāng)n=1時(shí),滿足上式,所以21、(1)(2)存在,【解析】(1)根據(jù)離心率及短軸長,利用橢圓中的關(guān)系可以求出橢圓方程;(2)設(shè)直線的方程,與橢圓方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系,結(jié)合已知和斜率公式,可以求出直線的方程.【小問1詳解】,,,,橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由已知可得,,,∴,∵,設(shè)直線的方程為:,代入橢圓方程整理得,設(shè),,則,,∵,∴.即,因?yàn)?,,?.所以,或.又時(shí),直線過點(diǎn),不合要求,所以.故存在直線:滿足題設(shè)條件.22、(1)(2)周長是定值,且定值為4【解析】(1)首先求出直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 清遠(yuǎn)2025年廣東清遠(yuǎn)市清城區(qū)委統(tǒng)一戰(zhàn)線工作部招聘專項(xiàng)工作聘員筆試歷年參考題庫附帶答案詳解
- 榆林2025年陜西榆林市靖邊縣事業(yè)單位招聘教師80人筆試歷年參考題庫附帶答案詳解
- 無錫2025年江蘇無錫市文物考古研究所招聘事業(yè)編制專業(yè)人才7人筆試歷年參考題庫附帶答案詳解
- 徐州2025年江蘇省徐州經(jīng)貿(mào)高等職業(yè)學(xué)校招聘教師15人筆試歷年參考題庫附帶答案詳解
- 寧波浙江寧波市海曙區(qū)招聘屠宰檢疫輔助員5人筆試歷年參考題庫附帶答案詳解
- 職業(yè)人群聽力健康檔案管理規(guī)范
- 南京2025年江蘇南京市秦淮區(qū)教育局所屬學(xué)校招聘高層次人才6人筆試歷年參考題庫附帶答案詳解
- 東莞廣東東莞市公安局東坑分局警務(wù)輔助人員招聘31人筆試歷年參考題庫附帶答案詳解
- 中國3-丁烯-1-醇行業(yè)市場運(yùn)行態(tài)勢及發(fā)展趨勢預(yù)測報(bào)告-智研咨詢發(fā)布
- 耳鼻喉科團(tuán)隊(duì)急癥模擬中的領(lǐng)導(dǎo)力培養(yǎng)策略-1
- 2025年工廠三級(jí)安全教育考試卷含答案
- 2026年上海理工大學(xué)單招職業(yè)適應(yīng)性測試題庫附答案
- TCEC電力行業(yè)數(shù)據(jù)分類分級(jí)規(guī)范-2024
- 建設(shè)用地報(bào)批培訓(xùn)課件
- 駱駝的養(yǎng)殖技術(shù)與常見病防治
- 化肥產(chǎn)品生產(chǎn)許可證實(shí)施細(xì)則(一)(復(fù)肥產(chǎn)品部分)2025
- 2025至2030中國醫(yī)療收入周期管理軟件行業(yè)深度研究及發(fā)展前景投資評(píng)估分析
- 基層醫(yī)療資源下沉的實(shí)踐困境與解決路徑實(shí)踐研究
- 1101無菌檢查法:2020年版 VS 2025年版對(duì)比表
- 醫(yī)務(wù)科副科長醫(yī)務(wù)人員調(diào)配工作方案
- 2025及未來5-10年高壓管匯項(xiàng)目投資價(jià)值市場數(shù)據(jù)分析報(bào)告
評(píng)論
0/150
提交評(píng)論