2026屆黑龍江省安達市第七中學數(shù)學高二上期末檢測模擬試題含解析_第1頁
2026屆黑龍江省安達市第七中學數(shù)學高二上期末檢測模擬試題含解析_第2頁
2026屆黑龍江省安達市第七中學數(shù)學高二上期末檢測模擬試題含解析_第3頁
2026屆黑龍江省安達市第七中學數(shù)學高二上期末檢測模擬試題含解析_第4頁
2026屆黑龍江省安達市第七中學數(shù)學高二上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆黑龍江省安達市第七中學數(shù)學高二上期末檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若命題“對任意,使得成立”是真命題,則實數(shù)a的取值范圍是()A. B.C. D.2.已知F是拋物線的焦點,直線l是拋物線的準線,則F到直線l的距離為()A.2 B.4C.6 D.83.在正方體ABCD﹣A1B1C1D1中,E為棱A1B1上一點,且AB=2,若二面角B1﹣BC1﹣E為45°,則四面體BB1C1E的外接球的表面積為()A.π B.12πC.9π D.10π4.已知公差不為0的等差數(shù)列中,,且,,成等比數(shù)列,則其前項和取得最大值時,的值為()A.12 B.13C.12或13 D.13或145.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的m的值是()A.-1 B.0C.0.1 D.16.觀察下列各式:,,,,,可以得出的一般結論是A.B.C.D.7.箱子中有5件產品,其中有2件次品,從中隨機抽取2件產品,設事件=“至少有一件次品”,則的對立事件為()A.至多兩件次品 B.至多一件次品C.沒有次品 D.至少一件次品8.“﹣3<m<4”是“方程表示橢圓”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要9.雙曲線的焦點到漸近線的距離為()A. B.2C. D.10.“且”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件11.已知,,若,則實數(shù)的值為()A. B.C. D.12.橢圓上的一點M到其左焦點的距離為2,N是的中點,則等于()A.1 B.2C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.如圖,橢圓的左右焦點為,,以為圓心的圓過原點,且與橢圓在第一象限交于點,若過、的直線與圓相切,則直線的斜率______;橢圓的離心率______.14.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x=_____________,y=_____________15.如圖所示,在直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,△AEB是等腰直角三角形,其中,則點D到平面ACE的距離為________16.阿波羅尼斯與阿基米德、歐幾里得被稱為亞歷山大時期的數(shù)學三巨匠.“阿波羅尼斯圓”是他的代表成果之一:平面上動點P到兩定點A,B的距離之比滿足(且,t為常數(shù)),則點的軌跡為圓.已知在平面直角坐標系中,,,動點P滿足,則P點的軌跡為圓,該圓方程為_________;過點的直線交圓于兩點,且,則_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,OP為圓錐的高,AB為底面圓O的直徑,C為圓O上一點,并且,E為劣弧上的一點,且,.(1)若E為劣弧的中點,求證:平面POE;(2)若E為劣弧的三等分點(靠近點),求平面PEO與平面PEB的夾角的余弦值.18.(12分)如圖,在四棱錐中,平面平面,,,,,(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)若點在棱上,且平面,求線段的長19.(12分)如圖,四棱錐P-ABCD的底面ABCD是菱形,PA⊥AB,PA⊥AD,且E、F分別是AC、PB的中點(1)證明:EF∥平面PCD;(2)求證:平面PBD⊥平面PAC20.(12分)已知圓,直線(1)求證:對,直線l與圓C總有兩個不同交點;(2)當時,求直線l被圓C截得的弦長21.(12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線為l:3x-y+1=0,若x=時,y=f(x)有極值(1)求a,b,c的值;(2)求y=f(x)在區(qū)間[-3,1]上最大值和最小值22.(10分)如圖,在空間直角坐標系中有長方體,且,,點E在棱AB上移動.(1)證明:;(2)當E為AB的中點時,求直線AC與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題得對任意恒成立,求出的最大值即可.【詳解】解:由題得對任意恒成立,(當且僅當時等號成立)所以故選:A2、B【解析】根據(jù)拋物線定義即可求解【詳解】由得,所以F到直線l的距離為故選:B3、D【解析】連接交于,可得,利用線面垂直的判定定理可得:平面,于是,可得而為二面角的平面角,再求出四面體的外接球半徑,進而利用球的表面積計算公式得出結論【詳解】連接交于,則,易知,則平面,所以,從而為二面角的平面角,則.因為,所以,所以四面體的外接球半徑故四面體BB1C1E的外接球的表面積為故選:D【點睛】本題考查了正方體的性質、線面垂直的判定與性質定理、二面角的平面角、球的表面積計算公式,考查了推理能力與計算能力,屬于中檔題4、C【解析】設等差數(shù)列的公差為q,根據(jù),,成等比數(shù)列,利用等比中項求得公差,再由等差數(shù)列前n項和公式求解.【詳解】設等差數(shù)列的公差為q,因為,且,,成等比數(shù)列,所以,解得,所以,所以當12或13時,取得最大值,故選:C5、B【解析】計算后,根據(jù)判斷框直接判斷即可得解.【詳解】輸入,計算,判斷為否,計算,輸出.故選:B.6、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以歸納:左邊每一個式子均有2n-1項,且第一項為n,則最后一項為3n-2右邊均為2n-1的平方故選C點睛:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想)7、C【解析】利用對立事件的定義,分析即得解【詳解】箱子中有5件產品,其中有2件次品,從中隨機抽取2件產品,可能出現(xiàn):“兩件次品”,“一件次品,一件正品”,“兩件正品”三種情況根據(jù)對立事件的定義,事件=“至少有一件次品”其對立事件為:“兩件正品”,即”沒有次品“故選:C8、B【解析】求出方程表示橢圓的充要條件是且,由此可得答案.【詳解】因為方程表示橢圓的充要條件是,解得且,所以“﹣3<m<4”是“方程表示橢圓”的必要不充分條件.故選:B【點睛】本題考查了由方程表示橢圓求參數(shù)的范圍,考查了充要條件和必要不充分條件,本題易錯點警示:漏掉,本題屬于基礎題.9、A【解析】根據(jù)點到直線距離公式進行求解即可.【詳解】由雙曲線的標準方程可知:,該雙曲線的焦點坐標為:,雙曲線的漸近線方程為:,所以焦點到漸近線的距離為:,故選:A10、B【解析】根據(jù)充分條件、必要條件的定義和橢圓的標椎方程,判斷可得出結論.【詳解】解:充分性:當,方程表示圓,充分性不成立;必要性:若方程表示橢圓,則,必有且,必要性成立,因此,“且”是“方程表示橢圓”的必要不充分條件.故選:B.11、A【解析】由,得,從而可得答案.【詳解】解:因為,所以,即,解得.故選:A.12、C【解析】先利用橢圓定義得到,再利用中位線定理得即可.【詳解】由橢圓方程,得,由橢圓定義得,又,,又為的中點,為的中點,線段為中位線,∴.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據(jù)直角三角形的性質求得,由此求得,結合橢圓的定義求得離心率.【詳解】連接,由于是圓的切線,所以.在中,,所以,所以,所以直線的斜率.,根據(jù)橢圓的定義可知.故答案為:;【點睛】本小題主要考查橢圓的定義、橢圓的離心率,屬于中檔題.14、①.3②.5【解析】根據(jù)莖葉圖進行數(shù)據(jù)分析,列方程求出x、y.【詳解】由題意,甲組數(shù)據(jù)為56,62,65,70+x,74;乙組數(shù)據(jù)為59,61,67,60+y,78.要使兩組數(shù)據(jù)中位數(shù)相等,有65=60+y,所以y=5.又平均數(shù)相同,則,解得x=3.故答案為:3;5.15、【解析】建立合適空間直角坐標系,分別表示出點的坐標,然后求解出平面的一個法向量,利用公式求解出點到平面的距離.【詳解】以AB的中點O為坐標原點,分別以OE,OB所在的直線為x軸、y軸,過垂直于平面的方向為軸,建立如下圖所示的空間直角坐標系,則,,設平面ACE的法向量,則,即,令,∴故點D到平面ACE的距離.故答案:.16、①.②.【解析】設,根據(jù)可得圓的方程,利用垂徑定理可求.【詳解】設,則,整理得到,即.因為,故為的中點,過圓心作的垂線,垂足為,則為的中點,則,故,解得,故答案為:,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)推導出平面,,,由此能證明平面(2)推導出,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值【小問1詳解】證明:為圓錐的高,平面,又平面,,為劣弧的中點,,,平面,平面【小問2詳解】解:解:為劣弧的三等分點(靠近點,為底面圓的直徑,為圓上一點,并且,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,,0,,,0,,,,,,0,,,3,,0,,,,,,,,,3,設平面的法向量,,,則,取,得,,,設平面的法向量,,,則,取,得,1,,設二面角的平面角為,則,二面角的余弦值為18、(Ⅰ)見解析.(Ⅱ).(Ⅲ).【解析】第一問根據(jù)面面垂直的性質和線面垂直的性質得出線線垂直的結論,注意在書寫的時候條件不要丟就行;第二問建立空間直角坐標系,利用法向量所成角的余弦值來求得二面角的余弦值;第三問利用向量共線的關系,得出向量的坐標,根據(jù)線面平行得出向量垂直,利用其數(shù)量積等于零,求得結果.(Ⅰ)證明:因為平面⊥平面,且平面平面,因為⊥,且平面所以⊥平面因為平面,所以⊥.(Ⅱ)解:在△中,因為,,,所以,所以⊥.所以,建立空間直角坐標系,如圖所示所以,,,,,,.易知平面的一個法向量為.設平面的一個法向量為,則,即,令,則.設二面角的平面角為,可知為銳角,則,即二面角的余弦值為(Ⅲ)解:因為點在棱,所以,因為,所以,.又因為平面,為平面的一個法向量,所以,即,所以所以,所以.19、(1)證明見解析;(2)證明見解析.【解析】(1)連結,證明EF∥PD即可;(2)證明BD⊥平面PAC即可【小問1詳解】連結,則是的中點,又是的中點,,又平面,面,平面【小問2詳解】∵PA⊥AB,PA⊥AD,AB∩AD=A,AB、AD平面ABCD,∴PA⊥平面ABCD,∵BD平面ABCD,∴PA⊥BD,是菱形,,又,平面,又平面,∴平面平面﹒20、(1)證明見解析;(2).【解析】(1)由直線過定點,只需判斷定點在圓內部,即可證結論.(2)由點線距離公式求弦心距,再利用半徑、弦心距、弦長的幾何關系求弦長即可.【小問1詳解】直線恒過定點,又,所以點在圓的內部,所以直線與圓總有兩個不同的交點,得證.【小問2詳解】由題設,,又的圓心為,半徑為,所以到直線的距離,所以所求弦長為21、(1);(2)最大值為,最小值為.【解析】(1)求導,結合導數(shù)的幾何意義列方程組,即可得解;(2)求導,確定函數(shù)的單調性和極值,再和端點值比較即可得解.【詳解】(1)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論