2026屆云南省通??h第三中學(xué)高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第1頁
2026屆云南省通??h第三中學(xué)高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第2頁
2026屆云南省通海縣第三中學(xué)高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第3頁
2026屆云南省通??h第三中學(xué)高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第4頁
2026屆云南省通海縣第三中學(xué)高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆云南省通??h第三中學(xué)高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的兩個(gè)頂點(diǎn)分別為A、B,點(diǎn)P為雙曲線上除A、B外任意一點(diǎn),且點(diǎn)P與點(diǎn)A、B連線的斜率為,若,則雙曲線的離心率為()A. B.C.2 D.32.如果,那么下列不等式成立的是()A. B.C. D.3.若兩個(gè)不同平面,的法向量分別為,,則()A.,相交但不垂直 B.C. D.以上均不正確4.函數(shù)的圖象大致是()A. B.C. D.5.點(diǎn)M在圓上,點(diǎn)N在直線上,則|MN|的最小值是()A. B.C. D.16.?dāng)?shù)列中,,,若,則()A.2 B.3C.4 D.57.1852年英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題解法傳至歐洲,西方人稱之為“中國剩余定理”.現(xiàn)有這樣一個(gè)問題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則=()A.130 B.132C.140 D.1448.在平面區(qū)域內(nèi)隨機(jī)投入一點(diǎn)P,則點(diǎn)P的坐標(biāo)滿足不等式的概率是()A. B.C. D.9.設(shè)是兩個(gè)不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則10.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.相交或相切11.已知拋物線C:的焦點(diǎn)為F,過點(diǎn)P(-1,0)且斜率為的直線l與拋物線C相交于A,B兩點(diǎn),則()A. B.14C. D.1512.正方體中,E、F分別是與的中點(diǎn),則直線ED與所成角的余弦值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和為,且滿足,若對于任意的,不等式恒成立,則實(shí)數(shù)的取值范圍為____________.14.命題“存在x∈R,使得x2+2x+5=0”的否定是15.已知對任意正實(shí)數(shù)m,n,p,q,有如下結(jié)論成立:若,則有成立,現(xiàn)已知橢圓上存在一點(diǎn)P,,為其焦點(diǎn),在中,,,則橢圓的離心率為______16.已知函數(shù)有零點(diǎn),則的取值范圍是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),(1)求的最大值;(2)求證:對于任意x∈(1,7),e1-x+18.(12分)已知拋物線上任意一點(diǎn)到焦點(diǎn)F最短距離為2,(1)求拋物線C的方程;(2)過焦點(diǎn)F的直線,互相垂直,且與C分別交于A,B,M,N四點(diǎn),求四邊形AMBN面積的最小值19.(12分)已知.(1)求在上的單調(diào)遞增區(qū)間;(2)已知銳角內(nèi)角,,的對邊長分別是,,,若,.求面積的最大值.20.(12分)已知橢圓的短軸長為2,左、右焦點(diǎn)分別為,,過且垂直于長軸的弦長為1(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若A,B為橢圓C上位于x軸同側(cè)的兩點(diǎn),且,共線,求四邊形的面積的最大值21.(12分)如圖,在長方體中,,,是棱的中點(diǎn)(1)求證:;(2)求平面與平面夾角的余弦值;(3)在棱上是否存在一點(diǎn),使得與平面所成角的正弦值為,若存在,求出的長;若不存在,請說明理由22.(10分)已知以點(diǎn)為圓心的圓與直線相切,過點(diǎn)的動(dòng)直線l與圓A相交于M,N兩點(diǎn)(1)求圓A的方程(2)當(dāng)時(shí),求直線l方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)題意設(shè)設(shè),根據(jù)題意得到,進(jìn)而求得離心率【詳解】根據(jù)題意得到設(shè),因?yàn)?,所以,所以,則故選:C.2、D【解析】利用不等式的性質(zhì)分析判斷每個(gè)選項(xiàng).【詳解】由不等式的性質(zhì)可知,因?yàn)?,所以,,故A錯(cuò)誤,D正確;由,可得,,故B,C錯(cuò)誤.故選:D3、B【解析】由向量數(shù)量積為0可求.【詳解】∵,,∴,∴,∴,故選:B.4、A【解析】根據(jù)函數(shù)的定義域及零點(diǎn)的情況即可得到答案.【詳解】函數(shù)的定義域?yàn)?,則排除選項(xiàng)、,當(dāng)時(shí),,則在上單調(diào)遞減,且,,由零點(diǎn)存在定理可知在上存在一個(gè)零點(diǎn),則排除,故選:.5、C【解析】根據(jù)題意可知圓心,又由于線外一點(diǎn)到已知直線的垂線段最短,結(jié)合點(diǎn)到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,半徑為,所以圓心到的距離為,所以的最小值為.故選:C.6、C【解析】由已知得數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,求出,再利用等比數(shù)列求和可得答案.【詳解】∵,∴,所以,數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,則,∴,∴,則,解得.故選:C.7、A【解析】分析數(shù)列的特點(diǎn),可知其是等差數(shù)列,寫出其通項(xiàng)公式,進(jìn)而求得結(jié)果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構(gòu)成首項(xiàng)為10,公差為12的等差數(shù)列,所以,故,故選:A.8、A【解析】根據(jù)題意作出圖形,進(jìn)而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.9、C【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的10、A【解析】由直線恒過定點(diǎn),且定點(diǎn)圓內(nèi),從而即可判斷直線與圓相交.【詳解】解:因?yàn)橹本€恒過定點(diǎn),而,所以定點(diǎn)在圓內(nèi),所以直線與圓相交,故選:A.11、C【解析】設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,,根據(jù)拋物線的定義求出,然后將直線的方程代入拋物線方程并化簡,進(jìn)而結(jié)合根與系數(shù)的關(guān)系求得答案.【詳解】設(shè)A、B兩點(diǎn)坐標(biāo)分別為,,直線的方程為,拋物線的準(zhǔn)線方程為:,由拋物線定義可知:.聯(lián)立方程,消去y后整理為,可得,,.故選:C.12、A【解析】以A為原點(diǎn)建立空間直角坐標(biāo)系,求出E,F,D,D1點(diǎn)的坐標(biāo),利用向量求法求解【詳解】如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選:A【點(diǎn)睛】本題考查異面直線所成角的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出,然后當(dāng)時(shí),由,得,兩式相減可求出,再驗(yàn)證,從而可得數(shù)列為等比數(shù)列,進(jìn)而可求出,再將問題轉(zhuǎn)化為在上恒成立,所以,從而可求出實(shí)數(shù)的取值范圍【詳解】當(dāng)時(shí),,得,當(dāng)時(shí),由,得,兩式相減得,得,滿足此式,所以,因?yàn)?,所以?shù)列是以為公比,為首項(xiàng)的等比數(shù)列,所以,所以對于任意的,不等式恒成立,可轉(zhuǎn)化為對于任意的,恒成立,即在上恒成立,所以,解得或,所以實(shí)數(shù)的取值范圍為故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查數(shù)列通項(xiàng)公的求法,等比數(shù)列求和公式的應(yīng)用,考查不等式恒成立問題,解題的關(guān)鍵是求出數(shù)列的通項(xiàng)公式后求得,再將問題轉(zhuǎn)化為在上恒成立求解即可,考查數(shù)學(xué)轉(zhuǎn)化思想,屬于較難題14、對任何x∈R,都有x2+2x+5≠0【解析】因?yàn)槊}“存在x∈R,使得x2+2x+5=0”是特稱命題,根據(jù)特稱命題的否定是全稱命題,可得命題的否定為:對任何x∈R,都有x2+2x+5≠0故答案為對任何x∈R,都有x2+2x+5≠015、【解析】根據(jù)正弦定理,結(jié)合題意,列出方程,代入數(shù)據(jù),化簡即可得答案.詳解】由題意得:,所以,所以,解得.故答案為:16、【解析】利用導(dǎo)數(shù)可求得函數(shù)的最小值,要使函數(shù)有零點(diǎn),只要,求得函數(shù)的最小值,即可得解.【詳解】解:,當(dāng)時(shí),,當(dāng)時(shí),,所以在上遞減,在上遞增,所以,因?yàn)楹瘮?shù)有零點(diǎn),所以,解得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)求出,討論其導(dǎo)數(shù)后可得原函數(shù)的單調(diào)性,從而可得函數(shù)的最大值.(2)先證明任意的,總有,再利用放縮法和換元法將不等式成立問題轉(zhuǎn)化為任意恒成立,后者可利用導(dǎo)數(shù)證明.【小問1詳解】,當(dāng)時(shí),;當(dāng)時(shí),,故在上為增函數(shù),在上為減函數(shù),故.【小問2詳解】因?yàn)?,故?dāng)時(shí),,即,而在為減函數(shù),故在上有,故任意的,總有.要證任意恒成立,即證:任意恒成立,即證:任意恒成立,由(1)可得,任意,有即,故即證:任意恒成立,設(shè),即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,設(shè),則,而在為增函數(shù),,故存在,使得,且時(shí),,時(shí),,故在為減函數(shù),在為增函數(shù),故任意,總有,故任意恒成立,所以任意恒成立.【點(diǎn)睛】思路點(diǎn)睛:不等式的恒成立,可結(jié)合不等式的形式將其轉(zhuǎn)化為若干段上的不等式的恒成立,在每段上可采用不同的方式(導(dǎo)數(shù)、放縮法等)進(jìn)行處理.18、(1)(2)128【解析】(1)設(shè)拋物線上任一點(diǎn)為,由可得答案.(2)由題意可知,的斜率k存在且不為0,設(shè)出其方程并與拋物線方程聯(lián)立,得出韋達(dá)定理,從而得出弦長的表達(dá)式,同理得出弦長的表達(dá)式,進(jìn)而得出四邊形AMBN面積的不等式,從而求出其最小值.【小問1詳解】設(shè)拋物線上任一點(diǎn)為,則,所以當(dāng)時(shí),,又∵,∴,即所以拋物線C的方程為【小問2詳解】設(shè)交拋物線C于點(diǎn),,交拋物線C于點(diǎn),由題意可知,的斜率k存在且不為0設(shè)的方程為由,得,同理可得,,當(dāng)且僅當(dāng)時(shí),即時(shí),等號成立∴四邊形AMBN面積的最小值為12819、(1);(2).【解析】(1)首先根據(jù)三角函數(shù)恒等變換得到,再求其單調(diào)增區(qū)間即可.(2)根據(jù)得到,根據(jù)余弦定理和基本不等式得到,結(jié)合三角形面積公式計(jì)算即可.【小問1詳解】由題意.由,得,令,得,所以在上的單調(diào)遞增區(qū)間是【小問2詳解】因?yàn)?,所以,得,又C是銳角,所以,由余弦定理:,得,所以,且當(dāng)時(shí)等號成立所以,故面積最大值為20、(1)(2)2【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)延長,交橢圓C于點(diǎn).設(shè)出直線的方程并與橢圓方程聯(lián)立,化簡寫出根與系數(shù)關(guān)系,根據(jù)對稱性求得四邊形的面積的表達(dá)式,利用換元法,結(jié)合基本不等式求得四邊形的面積的最大值.【小問1詳解】由題可知,即,因?yàn)檫^且垂直于長軸的弦長為1,所以,所以所以橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】因?yàn)?,共線,所以延長,交橢圓C于點(diǎn).設(shè),由(1)可知,可設(shè)直線的方程為聯(lián)立,消去x可得,所以,由對稱性可知設(shè)與間的距離為d,則四邊形的面積令,則.因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號,所以,即四邊形的面積的最大值為2【點(diǎn)睛】在橢圓、雙曲線、拋物線中,求三角形、四邊形面積的最值問題,求解策略是:首先結(jié)合弦長公式、點(diǎn)到直線距離公式等求得面積的表達(dá)式;然后利用基本不等式、二次函數(shù)的性質(zhì)等知識來求得最值.21、(1)證明見解析(2)(3)存點(diǎn),【解析】(1)先證明平面,由平面,可證明結(jié)論.(2)以分別為軸,建立空間直角坐標(biāo)系,分別求出平面與平面的法向量,利用向量法求求解即可.(3)設(shè),,則,則由向量法結(jié)合條件可得答案.【詳解】(1)在長方體中,,又,所以平面又平面,所以.(2)以分別為軸,建立空間直角坐標(biāo)系因?yàn)?,,是棱的中點(diǎn)則則為平面的一個(gè)法向量.設(shè)為平面的一個(gè)法向量.,所以,即取,可得所以如圖平面與平面夾角為銳角,所以平面與平面夾角的余弦值為.(3)設(shè),,則由(2)平面的一個(gè)法向量設(shè)與平面所成角為則解得,取所以存在點(diǎn),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論