黑龍江省齊齊哈爾八中2026屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁
黑龍江省齊齊哈爾八中2026屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁
黑龍江省齊齊哈爾八中2026屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁
黑龍江省齊齊哈爾八中2026屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁
黑龍江省齊齊哈爾八中2026屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省齊齊哈爾八中2026屆數(shù)學(xué)高二上期末經(jīng)典試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“楊輝三角”是中國古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù),,,,…構(gòu)成的數(shù)列的第項(xiàng),則的值為()A. B.C. D.2.已知等比數(shù)列的前3項(xiàng)和為3,,則()A. B.4C. D.13.是數(shù)列,,,-17,中的第幾項(xiàng)()A第項(xiàng) B.第項(xiàng)C.第項(xiàng) D.第項(xiàng)4.若函數(shù)恰好有個(gè)不同的零點(diǎn),則的取值范圍是()A. B.C. D.5.為發(fā)揮我市“示范性高中”的輻射帶動作用,促進(jìn)教育的均衡發(fā)展,共享優(yōu)質(zhì)教育資源.現(xiàn)分派我市“示范性高中”的5名教師到,,三所薄弱學(xué)校支教,開展送教下鄉(xiāng)活動,每所學(xué)校至少分派一人,其中教師甲不能到學(xué)校,則不同分派方案的種數(shù)是()A.150 B.136C.124 D.1006.已知雙曲線,其中一條漸近線與x軸的夾角為,則雙曲線的漸近線方程是()A. B.C. D.7.已知,,點(diǎn)為圓上任意一點(diǎn),設(shè),則的最大值為()A. B.C. D.8.已知數(shù)列的前n項(xiàng)和為,,,則()A. B.C.1025 D.20499.已知,,則在上的投影向量為()A.1 B.C. D.10.等差數(shù)列的前項(xiàng)和,若,則A.8 B.10C.12 D.1411.命題若,且,則,命題在中,若,則.下列命題中為真命題的是()A. B.C. D.12.已知拋物線過點(diǎn),則拋物線的焦點(diǎn)坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.隨機(jī)抽取某社區(qū)名居民,調(diào)查他們某一天吃早餐所花的費(fèi)用(單位:元),所獲數(shù)據(jù)的莖葉圖如圖所示,則這個(gè)數(shù)據(jù)的眾數(shù)是_________14.直線l過點(diǎn)P(1,3),且它的一個(gè)方向向量為(2,1),則直線l的一般式方程為__________.15.已知拋物線的焦點(diǎn)為F,過F的直線l交拋物線C于AB兩點(diǎn),且,則p的值為______16.展開式的常數(shù)項(xiàng)是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為數(shù)列的前項(xiàng)和,且(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和(3)設(shè),若不等式對一切恒成立,求實(shí)數(shù)取值范圍18.(12分)如圖所示,在直三棱柱中,是等腰直角三角形,(1)證明:;(2)若點(diǎn)E是棱的中點(diǎn),求平面與平面所成銳二面角的余弦值19.(12分)已知圓的圓心在直線上,且經(jīng)過點(diǎn)和.(1)求圓的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)且斜率存在的直線與圓交于,兩點(diǎn),且,求直線的方程.20.(12分)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要條件,求m的取值范圍21.(12分)在①,②是與的等比中項(xiàng),③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問題中,并解答問題:已知數(shù)列{}的前n項(xiàng)和為,,且滿足___(1)求數(shù)列{}的通項(xiàng)公式;(2)求數(shù)列{}前n項(xiàng)和注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分22.(10分)在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2AB=2(1)求四棱錐P﹣ABCD的體積V;(2)若F為PC的中點(diǎn),求證PC⊥平面AEF

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)楊輝三角可得數(shù)列的遞推公式,結(jié)合累加法可得數(shù)列的通項(xiàng)公式與.【詳解】由已知可得數(shù)列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.2、D【解析】設(shè)等比數(shù)列公比為,由已知結(jié)合等比數(shù)列的通項(xiàng)公式可求得,,代入即可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,由,得即,又,即又,,解得又等比數(shù)列的前3項(xiàng)和為3,故,即,解得故選:D3、C【解析】利用等差數(shù)列的通項(xiàng)公式即可求解【詳解】設(shè)數(shù)列,,,,是首項(xiàng)為,公差d=-4的等差數(shù)列{},,令,得故選:C4、D【解析】分析可知,直線與函數(shù)的圖象有個(gè)交點(diǎn),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可求得實(shí)數(shù)的取值范圍.【詳解】令,可得,構(gòu)造函數(shù),其中,由題意可知,直線與函數(shù)的圖象有個(gè)交點(diǎn),,由,可得或,列表如下:增極大值減極小值增所以,,,作出直線與函數(shù)的圖象如下圖所示:由圖可知,當(dāng)時(shí),即當(dāng)時(shí),直線與函數(shù)的圖象有個(gè)交點(diǎn),即函數(shù)有個(gè)零點(diǎn).故選:D.5、D【解析】對甲所在組的人數(shù)分類討論即得解.【詳解】當(dāng)甲一個(gè)人去一個(gè)學(xué)校時(shí),有種;當(dāng)甲所在的學(xué)校有兩個(gè)老師時(shí),有種;當(dāng)甲所在的學(xué)校有三個(gè)老師時(shí),有種;所以共有28+48+24=100種.故選:D【點(diǎn)睛】方法點(diǎn)睛:排列組合常用方法有:簡單問題直接法、小數(shù)問題列舉法、相鄰問題捆綁法、不相鄰問題插空法、至少問題間接法、復(fù)雜問題分類法、等概率問題縮倍法.要根據(jù)已知條件靈活選擇方法求解.6、C【解析】由已知條件計(jì)算可得,即得到結(jié)果.【詳解】由雙曲線,可知漸近線方程為,又雙曲線的一條漸近線與x軸的夾角為,故,即漸近線方程為.故選:C7、C【解析】根據(jù)題意可設(shè),再根據(jù),求出,再利用三角函數(shù)的性質(zhì)即可得出答案.【詳解】解:由點(diǎn)為圓上任意一點(diǎn),可設(shè),則,由,得,所以,則,則,其中,所以當(dāng)時(shí),取得最大值為22.故選:C.8、B【解析】根據(jù)題意得,進(jìn)而根據(jù)得數(shù)列是等比數(shù)列,公比為,首項(xiàng)為,再根據(jù)等比數(shù)列求和公式求解即可.【詳解】解:因?yàn)閿?shù)列的前n項(xiàng)和為滿足,所以當(dāng)時(shí),,解得,當(dāng)時(shí),,即所以,解得或,因?yàn)椋?所以,,所以當(dāng)時(shí),,所以,即所以數(shù)列是等比數(shù)列,公比為,首項(xiàng)為,所以故選:B9、C【解析】根據(jù)題意得,進(jìn)而根據(jù)投影向量的概念求解即可.【詳解】解:因?yàn)椋?,所以,所以,所以在上的投影向量為故選:C10、C【解析】假設(shè)公差為,依題意可得.所以.故選C.考點(diǎn):等差數(shù)列的性質(zhì).11、A【解析】根據(jù)不等式性質(zhì)及對數(shù)函數(shù)的單調(diào)性判斷命題的真假,根據(jù)大角對大邊及正弦定理可判斷命題的真假,再根據(jù)復(fù)合命題真假的判斷方法即可得出結(jié)論.【詳解】解:若,且,則,當(dāng)時(shí),,所以,當(dāng)時(shí),,所以,綜上命題為假命題,則為真命題,在中,若,則,由正弦定理得,所以命題為真命題,為假命題,所以為真命題,,,為假命題.故選:A.12、D【解析】把點(diǎn)代入拋物線方程求出,再化成標(biāo)準(zhǔn)方程可得解.【詳解】因?yàn)閽佄锞€過點(diǎn),所以,所以拋物線方程為,方程化成標(biāo)準(zhǔn)方程為,故拋物線的焦點(diǎn)坐標(biāo)為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將個(gè)數(shù)據(jù)寫出來,可得出這組數(shù)據(jù)的眾數(shù).【詳解】這個(gè)數(shù)據(jù)分別為、、、、、、、、、、、、、、,該組數(shù)據(jù)的眾數(shù)為.故答案為:.14、【解析】根據(jù)直線方向向量求出直線斜率即可得直線方程.【詳解】因?yàn)橹本€l的一個(gè)方向向量為(2,1),所以其斜率,所以l方程為:,即其一般式方程為:.故答案為:.15、3【解析】根據(jù)拋物線焦點(diǎn)弦性質(zhì)求解,或聯(lián)立l與拋物線方程,表示出,求其最值即可.【詳解】已知,設(shè),,,則,∵,所以,,∴,當(dāng)且僅當(dāng)m=0時(shí),取..故答案為:3.16、【解析】求出的通項(xiàng)公式,令的指數(shù)為0,即可求解.【詳解】的通項(xiàng)公式是,,依題意,令,所以的展開式中的常數(shù)項(xiàng)為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】(1)利用的關(guān)系,根據(jù)等比數(shù)列的定義求通項(xiàng)公式.(2)由(1)可得,應(yīng)用裂項(xiàng)相消法求.(3)應(yīng)用錯位相減法求得,由題設(shè)有,討論為奇數(shù)、偶數(shù)求的取值范圍【小問1詳解】當(dāng)時(shí),,可得,當(dāng)時(shí),,可得,∴是首項(xiàng)、公比都為的等比數(shù)列,故.【小問2詳解】由(1),,∴.【小問3詳解】由題設(shè),,∴,則,∴,由對一切恒成立,令,則,∴數(shù)列單調(diào)遞減,∴當(dāng)為奇數(shù),恒成立且在上遞減,則,當(dāng)為偶數(shù),恒成立且在上遞增,則,綜上,.18、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的判定定理證出平面,即可證得;(2)以A為原點(diǎn),分別以所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,根據(jù)二面角的向量公式即可求出【小問1詳解】如圖,連接,由已知可得四邊形是正方形,所以在直三棱柱中,平面平面,交線為,在中,可知,所以平面,于因?yàn)?,所以平面,而平面,所以【小?詳解】如圖所示,以A為原點(diǎn),分別以所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,則,于是設(shè)平面的法向量為,則,可取而平面的一個(gè)法向量為,所以故平面與平面所成銳二面角的余弦值為19、(1)(2)【解析】(1)設(shè)圓心,由題意得,,結(jié)合兩點(diǎn)間的距離公式求解的值,則圓心與半徑可求,圓的方程可求;(2)若直線的斜率不存在,設(shè)直線的方程為,符合題意,若直線的斜率存在,設(shè)直線方程為,即,由圓心到直線的距離與半徑關(guān)系求得,則直線方程可求【小問1詳解】解:(1)設(shè)圓心,由題意得,,,解得.圓心坐標(biāo)為,半徑.則圓的方程為;【小問2詳解】解:(2)直線的斜率存在時(shí),設(shè)直線的方程為,即,,圓心到直線的距離,即,解得,得直線的方程為.20、.【解析】由x2﹣8x﹣20≤0,解得﹣2≤x≤10.根據(jù)非空集合S={x|1﹣m≤x≤1+m}.又x∈P是x∈S的必要條件,可得,1﹣m≤1+m,解得m范圍【詳解】由x2﹣8x﹣20≤0,解得﹣2≤x≤10.∴P=[﹣2,10]非空集合S={x|1﹣m≤x≤1+m}.又x∈P是x∈S的必要條件,∴,1﹣m≤1+m,解得0≤m≤3∴m的取值范圍是[0,3]【點(diǎn)睛】本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題21、(1);(2).【解析】(1)選①,可得數(shù)列為等差數(shù)列,求出,由,可得數(shù)列的通項(xiàng)公式為選②是與的等比中項(xiàng),可得,由,可得,從而利用累乘法求得數(shù)列的通項(xiàng)公式為選③,由,可得,則數(shù)列為等差數(shù)列,從而求出通項(xiàng)公式(2)由(1)知,求出,利用錯位相減求和法求出小問1詳解】選①.因?yàn)椋?,所以是首?xiàng)為1,公差為1的等差數(shù)列則,從而當(dāng)時(shí),,經(jīng)檢驗(yàn),當(dāng)時(shí),也符合上式.所以選②.因?yàn)槭桥c的等比中項(xiàng)所以,當(dāng)時(shí),,兩式相減得,整理得,所以,經(jīng)檢驗(yàn),也符合上式,所以選③.由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論