版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆安徽省安慶市大觀區(qū)第一中學(xué)數(shù)學(xué)高二上期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過雙曲線的左焦點作x軸的垂線交曲線C于點P,為右焦點,若,則雙曲線的離心率為()A. B.C. D.2.已知球O的半徑為2,球心到平面的距離為1,則球O被平面截得的截面面積為()A. B.C. D.3.已知是定義在上的函數(shù),且對任意都有,若函數(shù)的圖象關(guān)于點對稱,且,則()A. B.C. D.4.在四面體中,設(shè),若F為BC的中點,P為EF的中點,則=()A. B.C. D.5.已知數(shù)列為等比數(shù)列,則“為常數(shù)列”是“成等差數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件6.若動點在方程所表示的曲線上,則以下結(jié)論正確的是()①曲線關(guān)于原點成中心對稱圖形;②動點到坐標(biāo)原點的距離的取值范圍為;③動點與點的最小距離為;④動點與點的連線斜率的取值范圍是.A.①② B.①②③C.③④ D.①②④7.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,過F1的直線l交橢圓于M,N兩點,若△MF2N的周長為8,則橢圓方程為()A. B.C. D.8.已知函數(shù),若對任意的,,且,總有,則的取值范圍是()A B.C. D.9.已知拋物線過點,則拋物線的焦點坐標(biāo)為()A. B.C. D.10.用反證法證明“若a,b∈R,,則a,b不全為0”時,假設(shè)正確的是()A.a,b中只有一個為0 B.a,b至少一個不為0C.a,b至少有一個為0 D.a,b全為011.已知、是橢圓和雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.512.已知函數(shù),若對任意兩個不等的正數(shù),,都有恒成立,則a的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)的遞增區(qū)間是,則實數(shù)______.14.已知在△中,角A,B,C的對邊分別是a,b,c,若△的面積為2,邊上中線的長為.且,則△外接圓的面積為___________15.給定點、、與點,求點到平面的距離______.16.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵,中,M是的中點,,,,若,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點P到點的距離比它到直線的距離小1.(1)求點P的軌跡方程;(2)點M,N在點P的軌跡上且位于x軸的兩側(cè),(其中O為坐標(biāo)原點),求面積的最小值.18.(12分)如圖,已知圓臺下底面圓的直徑為,是圓上異于、的點,是圓臺上底面圓上的點,且平面平面,,,、分別是、的中點.(1)證明:平面;(2)若直線上平面且過點,試問直線上是否存在點,使直線與平面所成的角和平面與平面的夾角相等?若存在,求出點的所有可能位置;若不存在,請說明理由.19.(12分)從某居民區(qū)隨機抽取2021年的10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,計算得,,,(1)求家庭的月儲蓄對月收入的線性回歸方程;(2)判斷變量與之間是正相關(guān)還是負(fù)相關(guān);(3)利用(1)中的回歸方程,分析2021年該地區(qū)居民月收入與月儲蓄之間的變化情況,并預(yù)測當(dāng)該居民區(qū)某家庭月收入為7千元,該家庭的月儲蓄額.附:線性回歸方程系數(shù)公式中,,,其中,為樣本平均值20.(12分)在四棱錐中,底面ABCD為菱形,,側(cè)面為等腰直角三角形,,,點E為棱AD的中點(1)求證:平面ABCD;(2)求直線AB與平面PBC所成角的正弦值21.(12分)已知命題:方程有實數(shù)解,命題:,.(1)若是真命題,求實數(shù)的取值范圍;(2)若為假命題,且為真命題,求實數(shù)的取值范圍.22.(10分)已知圓M經(jīng)過點F(2,0),且與直線x=-2相切.(1)求圓心M的軌跡C的方程;(2)過點(-1,0)的直線l與曲線C交于A,B兩點,若,求直線l的斜率k的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題知是等腰直角三角形,,又根據(jù)通徑的結(jié)論知,結(jié)合可列出關(guān)于的二次齊次式,即可求解離心率.【詳解】由題知是等腰直角三角形,且,,又,,即,,,即,解得,,.故選:D.2、B【解析】根據(jù)球的性質(zhì)可求出截面圓的半徑即可求解.【詳解】由球的性質(zhì)可知,截面圓的半徑為,所以截面的面積.故選:B3、D【解析】令,代入可得,即得,再由函數(shù)的圖象關(guān)于點對稱,判斷得函數(shù)的圖象關(guān)于點對稱,即,則化簡可得,即函數(shù)的周期為,從而代入求解.【詳解】令,得,即,所以,因為函數(shù)的圖象關(guān)于點對稱,所以函數(shù)的圖象關(guān)于點對稱,即,所以,即,可得,則,故選:D.第II卷(非選擇題4、A【解析】作出圖示,根據(jù)空間向量的加法運算法則,即可得答案.【詳解】如圖示:連接OF,因為P為EF中點,,F(xiàn)為BC的中點,則,故選:A5、C【解析】先考慮充分性,再考慮必要性即得解.【詳解】解:如果為常數(shù)列,則成等差數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的充分條件;等差數(shù)列,所以,所以數(shù)列為,所以數(shù)列是常數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的必要條件.所以“為常數(shù)列”是“成等差數(shù)列”的充要條件.故選:C6、A【解析】將原方程等價變形為,將方程中的換為,換為,方程不變,可判斷①;利用兩點間的距離公式,結(jié)合二次函數(shù)知識可判斷②和③;取特殊點可判斷④.【詳解】因為等價于,即,對于①,將方程中的換為,換為,方程不變,所以曲線關(guān)于原點成中心對稱圖形,故①正確;對于②,設(shè),則動點到坐標(biāo)原點的距離,因為,所以,故②正確;對于③,設(shè),動點與點的距離為,因為函數(shù)在上遞減,所以當(dāng)時,函數(shù)取得最小值,從而取得最小值,故③不正確;對于④,當(dāng)時,因為,所以,故④不正確.綜上所述:結(jié)論正確的是:①②.故選:A7、A【解析】由題得c=1,再根據(jù)△MF2N的周長=4a=8得a=2,進(jìn)而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,∴c=1,又根據(jù)橢圓的定義,△MF2N的周長=4a=8,得a=2,進(jìn)而得b=,所以橢圓方程為.故答案為A【點睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.8、B【解析】根據(jù)函數(shù)單調(diào)性定義、二次函數(shù)性質(zhì)及對稱軸方程,即可求解參數(shù)取值范圍.【詳解】依題意可得,在上為減函數(shù),則,即的取值范圍是故選:B【點睛】本題考查函數(shù)單調(diào)性定義,二次函數(shù)性質(zhì),屬于基礎(chǔ)題.9、D【解析】把點代入拋物線方程求出,再化成標(biāo)準(zhǔn)方程可得解.【詳解】因為拋物線過點,所以,所以拋物線方程為,方程化成標(biāo)準(zhǔn)方程為,故拋物線的焦點坐標(biāo)為.故選:D.10、D【解析】把要證的結(jié)論否定之后,即得所求的反設(shè)【詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設(shè)正確的是a,b全為0.故選:D11、C【解析】依據(jù)橢圓和雙曲線定義和題給條件列方程組,得到關(guān)于橢圓的離心率和雙曲線的離心率的關(guān)系式,即可求得的值.【詳解】設(shè)橢圓的長軸長為,雙曲線的實軸長為,令,不妨設(shè)則,解之得代入,可得整理得,即,也就是故選:C12、A【解析】將已知條件轉(zhuǎn)化為時恒成立,利用參數(shù)分離的方法求出a的取值范圍【詳解】對任意都有恒成立,則時,,當(dāng)時恒成立,
,當(dāng)時恒成立,,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求得二次函數(shù)的單調(diào)增區(qū)間,即可求得參數(shù)的值.【詳解】因為二次函數(shù)開口向上,對稱軸為,故其單調(diào)增區(qū)間為,又由題可知:其遞增區(qū)間是,故.故答案為:.14、或【解析】由已知,結(jié)合正弦定理邊角關(guān)系及三角形內(nèi)角的性質(zhì)可得,再根據(jù)三角形面積公式、余弦定理列方程求邊長b、c,應(yīng)用余弦定理求邊長a,根據(jù)正弦定理求外接圓半徑,再用圓的面積公式求面積.【詳解】由題設(shè)及正弦定理邊角關(guān)系有,又,∴,∴,∴.又,∴,即又據(jù)題意,得,且,∴或,故或,∴△外接圓的半徑或,∴△外接圓的面積為或故答案為:或15、【解析】先求出平面的法向量,再利用點到面的距離公式計算即可.【詳解】設(shè)平面的法向量為,點到平面的距離為,,,即,令,得故答案為:.16、【解析】建立空間直角坐標(biāo)系,利用空間向量可以解決問題.【詳解】設(shè),如下圖所示,建立空間直角坐標(biāo)系,,,,,,則所以又因為所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定條件可得點P到點的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設(shè)出點M,N的坐標(biāo),再結(jié)合給定條件及三角形面積定理列式,借助均值不等式計算作答.【小問1詳解】因點P到點的距離比它到直線的距離小1,顯然點P與F在直線l同側(cè),于是得點P到點的距離等于它到直線的距離,則點P的軌跡是以F為焦點,直線為準(zhǔn)線的拋物線,所以點P的軌跡方程是.【小問2詳解】由(1)設(shè)點,,且,因,則,解得,S,當(dāng)且僅當(dāng),即時取“=”,所以面積的最小值為.【點睛】思路點睛:圓錐曲線中的幾何圖形面積范圍或最值問題,可以以直線的斜率、橫(縱)截距、圖形上動點的橫(縱)坐標(biāo)為變量,建立函數(shù)關(guān)系求解作答.18、(1)證明見解析;(2)存在,點與點重合.【解析】(1)證明出,利用面面垂直的性質(zhì)可證得結(jié)論成立;(2)以為坐標(biāo)原點,為軸,為軸,過垂直于平面的直線為軸,建立空間直角坐標(biāo)系,易知軸在平面內(nèi),分析可知,設(shè)點,利用空間向量法結(jié)合同角三角函數(shù)的基本關(guān)系可得出關(guān)于的方程,解出的值,即可得出結(jié)論.【小問1詳解】證明:因為為圓的一條直徑,且是圓上異于、的點,故,又因平面平面,平面平面,平面,所以平面.【小問2詳解】解:存在,理由如下:如圖,以為坐標(biāo)原點,為軸,為軸,過垂直于平面的直線為軸,建立空間直角坐標(biāo)系,易知軸在平面內(nèi),則,,,,,,由直線平面且過點,以及平面,得,設(shè),則,,,設(shè)平面的法向量為,則則,即,取,得,易知平面的法向量,設(shè)直線與平面所成的角為,平面與平面的夾角為,則,,由,得,即,解得,所以當(dāng)點與點重合時,直線與平面所成的角和平面與平面的夾角相等.19、(1)=0.3x-0.4(2)正相關(guān)(3)1.7千元【解析】(1)由題意得到n=10,求得,進(jìn)而求得,寫出回歸方程;.(2)由判斷;(3)將x=7代入回歸方程求解.【小問1詳解】由題意知n=10,,則,所以所求回歸方程為=0.3x-0.4.【小問2詳解】因為,所以變量y的值隨x的值增加而增加,故x與y之間是正相關(guān).【小問3詳解】將x=7代入回歸方程可以預(yù)測該家庭的月儲蓄為=0.3×7-0.4=1.7(千元).20、(1)證明見解析,(2)【解析】(1)題中易得,,利用勾股定理可得,從而可證得線面垂直;(2)以E為原點,EA為x軸,EB為y軸,EP為z軸,建立空間直角坐標(biāo)系,用空間向量法求線面角的正弦值【詳解】(1)證明:在四棱錐中,底面ABCD為菱形,,側(cè)面為等腰直角三角形,,,點E為棱AD的中點,,,,,,,平面ABCD(2)以E為原點,EA為x軸,EB為y軸,EP為z軸,建立空間直角坐標(biāo)系,0,,,0,,,,,,設(shè)平面PBC的法向量y,,則,取,得1,,設(shè)直線AB與平面PBC所成角,直線AB與平面PBC所成角的正弦值為:【點睛】本題考查線面垂直的證明,考查空間向量法求線面角.空間角的求法一般都是建立空間直角坐標(biāo)系,用空間向量法求得空間角21、(1)或;(2)【解析】(1)由方程有實數(shù)根則,可求出實數(shù)的取值范圍.(2)為真命題,即從而得出的取值范圍,由(1)可得出為假命題時實數(shù)的取值范圍.即可得出答案.【詳解】解:(1)方程有實數(shù)解得,,解之得或;(2)為假命題,則,為真命題時,,,則故.故為假命題且為真命題時,.【點睛】本題考查命題為真時求參數(shù)的范圍和兩個命題同時滿足條件時,求參數(shù)的范
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年綠色供應(yīng)鏈協(xié)同管理實務(wù)
- 2026年會員日促銷方案策劃指南
- 2026福建福州軟件職業(yè)技術(shù)學(xué)院招聘19人備考題庫附答案詳解
- 2026西藏山南加查縣文旅局公益性崗位的招聘1人備考題庫及答案詳解參考
- 計算機自然語言處理應(yīng)用手冊
- 職業(yè)噪聲心血管疾病的綜合干預(yù)策略優(yōu)化
- 職業(yè)噪聲與心血管疾病環(huán)境暴露評估技術(shù)
- 客戶活動年終總結(jié)范文(3篇)
- 職業(yè)健康檔案電子化數(shù)據(jù)在職業(yè)病科研中的應(yīng)用
- 職業(yè)健康促進(jìn)醫(yī)療成本控制策略
- 2026年無錫工藝職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試題庫帶答案解析
- 數(shù)字孿生方案
- 【低空經(jīng)濟(jì)】無人機AI巡檢系統(tǒng)設(shè)計方案
- 金融領(lǐng)域人工智能算法應(yīng)用倫理與安全評規(guī)范
- 2025年公務(wù)員多省聯(lián)考《申論》題(陜西A卷)及參考答案
- cie1931年標(biāo)準(zhǔn)色度觀測者的光譜色品坐標(biāo)
- per200軟件petrel2009中文版教程
- SB/T 10595-2011清潔行業(yè)經(jīng)營服務(wù)規(guī)范
- JJF 1078-2002光學(xué)測角比較儀校準(zhǔn)規(guī)范
- 新鄉(xiāng)市興華煤礦盡職調(diào)查報告
- GB 1886.215-2016食品安全國家標(biāo)準(zhǔn)食品添加劑白油(又名液體石蠟)
評論
0/150
提交評論