江西省豐城九中2026屆數(shù)學高一上期末檢測試題含解析_第1頁
江西省豐城九中2026屆數(shù)學高一上期末檢測試題含解析_第2頁
江西省豐城九中2026屆數(shù)學高一上期末檢測試題含解析_第3頁
江西省豐城九中2026屆數(shù)學高一上期末檢測試題含解析_第4頁
江西省豐城九中2026屆數(shù)學高一上期末檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

江西省豐城九中2026屆數(shù)學高一上期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.平行于同一平面的兩條直線的位置關系是A.平行 B.相交或異面C.平行或相交 D.平行、相交或異面2.已知函數(shù)若曲線與直線的交點中,相鄰交點的距離的最小值為,則的最小正周期為A. B.C. D.3.在線段上任取一點,則此點坐標大于1的概率是()A. B.C. D.4.如圖,一根絕對剛性且長度不變、質(zhì)量可忽略不計線,一端固定,另一端懸掛一個沙漏讓沙漏在偏離平衡位置一定角度后在重力作用下在鉛垂面內(nèi)做周期擺動.設線長為,沙漏擺動時離開平衡位置的位移(單位:cm)與時間(單位:s)的函數(shù)關系是,.若,要使沙漏擺動的最小正周期是,則線長約為()A.5m B.C. D.20m5.已知函數(shù)則函數(shù)的零點個數(shù)為()A.0 B.1C.2 D.36.已知直線的方程是,的方程是,則下列各圖形中,正確的是A. B.C. D.7.已知函數(shù)的圖像過點和,則在定義域上是A.奇函數(shù) B.偶函數(shù)C.減函數(shù) D.增函數(shù)8.已知,,則()A. B.C. D.9.一個機器零件的三視圖如圖所示,其中側(cè)視圖是一個半圓與邊長為的正方形,俯視圖是一個半圓內(nèi)切于邊長為的正方形.若該機器零件的表面積為,則的值為A.4 B.2C.8 D.610.已知是定義在上的減函數(shù),若對于任意,均有,,則不等式的解集為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,,BC邊上的高等于,則______________12.已知冪函數(shù)y=xα的圖象過點(4,),則α=__________.13.____14.如下圖所示,三棱錐外接球的半徑為1,且過球心,圍繞棱旋轉(zhuǎn)后恰好與重合.若,則三棱錐的體積為_____________.15.若,且,則上的最小值是_________.16.函數(shù)的圖象與軸相交于點,如圖是它的部分圖象,若函數(shù)圖象相鄰的兩條對稱軸之間的距離為,則_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在三棱柱中,側(cè)棱底面,點是的中點.(1)求證:;(2)求證:;(3)求直線與平面所成的角的正切值.18.已知函數(shù)fx(1)求函數(shù)fx(2)判斷函數(shù)fx(3)判斷函數(shù)fx在區(qū)間0,1上的單調(diào)性,并用定義證明19.在平面直角坐標系中,已知角的頂點為坐標原點,始邊為軸的正半軸,終邊過點(1)求的值;(2)求的值20.已知以點為圓心的圓過點和,線段的垂直平分線交圓于點、,且,(1)求直線的方程;(2)求圓的方程(3)設點在圓上,試探究使的面積為8的點共有幾個?證明你的結(jié)論21.已知函數(shù).(1)求的單調(diào)區(qū)間;(2)若,且,求值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)線面平行的位置關系及線線位置關系的分類及定義,可由已知兩直線平行于同一平面,得到兩直線的位置關系【詳解】解:若,且則與可能平行,也可能相交,也有可能異面故平行于同一個平面的兩條直線的位置關系是平行或相交或異面故選【點睛】本題考查的知識點是空間線線關系及線面關系,熟練掌握空間線面平行的位置關系及線線關系的分類及定義是詳解本題的關鍵,屬于基礎題2、D【解析】將函數(shù)化簡,根據(jù)曲線y=f(x)與直線y=1的交點中,相鄰交點的距離的最小值為,即ωx2kπ或ωx2kπ,k∈Z,建立關系,可得ω的值,即得f(x)的最小正周期【詳解】解:函數(shù)f(x)=cosωx+sinωx,ω>0,x∈R化簡可得:f(x)sin(ωx)∵曲線y=f(x)與直線y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故選D【點睛】本題考查了和差公式、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的方程的解法,考查了推理能力與計算能力,屬于中檔題3、B【解析】設“所取點坐標大于1”為事件A,則滿足A的區(qū)間為[1,3]根據(jù)幾何概率的計算公式可得,故選B.點睛:(1)當試驗的結(jié)果構(gòu)成的區(qū)域為長度、面積、體積等時,應考慮使用幾何概型求解(2)利用幾何概型求概率時,關鍵是試驗的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設出變量,在坐標系中表示所需要的區(qū)域(3)幾何概型有兩個特點:一是無限性,二是等可能性.基本事件可以抽象為點,盡管這些點是無限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用“比例解法”求解幾何概型的概率4、A【解析】根據(jù)余弦函數(shù)的周期公式計算,即可求得答案.【詳解】因為函數(shù)最小正周期是,故,即,解得(m),故選:A5、C【解析】的零點個數(shù)等于的圖象與的圖象的交點個數(shù),作出函數(shù)f(x)和的圖像,根據(jù)圖像即可得到答案.【詳解】的零點個數(shù)等于的圖象與的圖象的交點個數(shù),由圖可知,的圖象與的圖象的交點個數(shù)為2.故選:C.6、D【解析】對于D:l1:y=ax+b,l2:y=bx-a.由l1可知a<0,b<0,對應l2也符合,7、D【解析】∵f(x)的圖象過點(4,0)和(7,1),∴∴f(x)=log4(x-3).∴f(x)是增函數(shù).∵f(x)的定義域是(3,+∞),不關于原點對稱.∴f(x)為非奇非偶函數(shù)故選D8、D【解析】由同角三角函數(shù)的平方關系計算即可得出結(jié)果.【詳解】因為,,,,所以.故選:D9、A【解析】幾何體為一個正方體與四分之一個球的組合體,所以表面積為,選A點睛:空間幾何體表面積的求法(1)以三視圖為載體的幾何體的表面積問題,關鍵是分析三視圖確定幾何體中各元素之間的位置關系及數(shù)量(2)多面體的表面積是各個面的面積之和;組合體的表面積注意銜接部分的處理(3)旋轉(zhuǎn)體的表面積問題注意其側(cè)面展開圖的應用10、D【解析】根據(jù)已知等式,結(jié)合函數(shù)的單調(diào)性進行求解即可.【詳解】令時,,由,因為是定義在上的減函數(shù),所以有,故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】設邊上的高為,則,求出,.再利用余弦定理求出.【詳解】設邊上的高為,則,所以,由余弦定理,知故答案為【點睛】本題主要考查余弦定理,意在考查學生對該知識的理解掌握水平,屬于基礎題.12、【解析】把點的坐標代入冪函數(shù)解析式中即可求出.【詳解】解:由冪函數(shù)的圖象過點,所以,解得.故答案為:.13、-1【解析】根據(jù)和差公式得到,代入化簡得到答案.【詳解】故答案為:【點睛】本題考查了和差公式,意在考查學生的計算能力.14、【解析】作于,可證得平面,得,得等邊三角形,利用是球的直徑,得,然后計算出,再應用棱錐體積公式計算體積【詳解】∵圍繞棱旋轉(zhuǎn)后恰好與重合,∴,作于,連接,則,,∴又過球心,∴,而,∴,同理,,,由,,,得平面,∴故答案為:【點睛】易錯點睛:本題考查求棱錐的體積,解題關鍵是作于,利用旋轉(zhuǎn)重合,得平面,這樣只要計算出的面積,即可得體積,這樣作圖可以得出,為旋轉(zhuǎn)所形成的二面角的平面角,這里容易出錯在誤認為旋轉(zhuǎn),即為.旋轉(zhuǎn)是旋轉(zhuǎn)形成的二面角為.應用作出二面角的平面角15、【解析】將的最小值轉(zhuǎn)化為求的最小值,然后展開后利用基本不等式求得其最小值【詳解】解:因為,且,,當且僅當時,即,時等號成立;故答案為:16、【解析】根據(jù)圖象可得,由題意得出,即可求出,再代入即可求出,進而得出所求.【詳解】由函數(shù)圖象可得,相鄰的兩條對稱軸之間的距離為,,則,,,又,即,,或,根據(jù)“五點法”畫圖可判斷,,.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析(3)【解析】【試題分析】(1)依據(jù)題設運用線面平行的判定定理進行分析推證;(2)借助題設條件先證明線面垂直,再運用線面垂直的性質(zhì)定理進行推證;(3)先運用線面角的定義找出線面角,再運用解三角形求其正切值:(1)如圖,令分別為的中點,又∵(2)證明:∠⊥在直三棱柱中,⊥又⊥平面,又⊥(3)由(2)得AC⊥平面∴直線是斜線在平面上的射影∴是直線與平面所成的角.在中,∴,即求直線與平面的正切值為.點睛:立體幾何是高中數(shù)學重點內(nèi)容之一,也是高考重點考查的考點和熱點.這類問題的設置目的是考查空間線面的位置關系及角度距離的計算.求解本題第一問時,直接依據(jù)題設運用線面平行的判定定理進行分析推證;求解第二問,充分借助題設條件先證明線面垂直,再運用線面垂直的性質(zhì)定理從而使得問題獲證;求解第三問時,先運用線面角的定義找出線面角,再運用解三角形求其正切值使得問題獲解18、(1)-1,1(2)函數(shù)fx(3)函數(shù)fx在區(qū)間0,1【解析】(1)根據(jù)對數(shù)的真數(shù)部分大于零列不等式求解;(2)根據(jù)f-x(3)?x1,x2∈0,1,且【小問1詳解】根據(jù)題意,有1+x>0,1-x>0,得-1<x<1所以函數(shù)fx的定義域為-1,1【小問2詳解】函數(shù)fx為偶函數(shù)證明:函數(shù)fx的定義域為-1,1因為f-x所以fx為偶函數(shù)【小問3詳解】函數(shù)fx在區(qū)間0,1上單調(diào)遞減證明:?x1,x2fx因為0<x1+又1+所以1+x所以lg1+x1所以函數(shù)fx在區(qū)間0,119、(1)(2)當時,;當時,【解析】(1)根據(jù)三角函數(shù)的定義及誘導公式、同角三角函數(shù)基本關系化簡求解;(2)分,分別由定義求出三角函數(shù)值求解即可.【小問1詳解】由角的終邊過點,得,所以【小問2詳解】當時,,所以當時,,所以綜上,當時,;當時,20、(1);(2)或;(3)2【解析】(1)根據(jù)直線是線段的垂直平分線的方程,求出線段中點坐標和直線的斜率,即可解直線的方程;(2)作圖,利用圓的幾何性質(zhì)即可;(3)用面積公式可以推出點Q到直線AB的距離,從而判斷出Q的個數(shù).【詳解】由題意作圖如下:(1)∵,的中點坐標為∴直線的方程為:即;(2)設圓心,則由在上得……①又直徑為,∴∴……

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論