湘西市重點中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第1頁
湘西市重點中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第2頁
湘西市重點中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第3頁
湘西市重點中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第4頁
湘西市重點中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湘西市重點中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)為的導(dǎo)函數(shù),令,則下列關(guān)系正確的是()A. B.C. D.2.已知雙曲線:,直線經(jīng)過點,若直線與雙曲線的右支只有一個交點,則直線的斜率的取值范圍是()A. B.C. D.3.如圖,四面體-,是底面△的重心,,則()A B.C. D.4.已知拋物線的焦點為,點為拋物線上一點,點,則的最小值為()A. B.2C. D.35.實數(shù)且,,則連接,兩點的直線與圓C:的位置關(guān)系是()A.相離 B.相切C.相交 D.不能確定6.已知過拋物線焦點的直線交拋物線于,兩點,則的最小值為()A. B.2C. D.37.1202年,意大利數(shù)學(xué)家斐波那契出版了他的《算盤全書》.他在書中收錄了一些有意思的問題,其中有一個關(guān)于兔子繁殖的問題:如果1對兔子每月生1對小兔子(一雌一雄),而每1對小兔子出生后的第3個月里,又能生1對小兔子,假定在不發(fā)生死亡的情況下,如果用Fn表示第n個月的兔子的總對數(shù),則有(n>2),.設(shè)數(shù)列{an}滿足:an=,則數(shù)列{an}的前36項和為()A.11 B.12C.13 D.188.概率論起源于賭博問題.法國著名數(shù)學(xué)家布萊爾帕斯卡遇到兩個賭徒向他提出的賭金分配問題:甲、乙兩賭徒約定先贏滿局者,可獲得全部賭金法郎,當(dāng)甲贏了局,乙贏了局,不再賭下去時,賭金如何分配?假設(shè)每局兩人輸贏的概率各占一半,每局輸贏相互獨立,那么賭金分配比較合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎9.已知數(shù)列的通項公式為,則()A.12 B.14C.16 D.1810.過,兩點的直線的一個方向向量為,則()A.2 B.2C.1 D.111.已知平面的一個法向量為=(2,-2,4),=(-1,1,-2),則AB所在直線l與平面的位置關(guān)系為()A.l⊥ B.C.l與相交但不垂直 D.l∥12.雙曲線(,)的一條漸近線的傾斜角為,則離心率為()A. B.C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知長方體的棱,則異面直線與所成角的大小是________________.(結(jié)果用反三角函數(shù)值表示)14.已知函數(shù)有零點,則的取值范圍是___________.15.以雙曲線的右焦點為圓心,為半徑的圓與的一條漸近線交于兩點,若,則雙曲線的離心率為_________16.過橢圓上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知p:方程所表示的曲線為焦點在x軸上的橢圓;q:當(dāng)時,函數(shù)恒成立.(1)若p為真,求實數(shù)t的取值范圍;(2)若為假命題,且為真命題,求實數(shù)t的取值范圍18.(12分)如圖,在多面體ABCDEF中,四邊形ABCD是菱形,∠ABC=60°,F(xiàn)A⊥平面ABCD,ED//FA,且AB=FA=2ED=2(1)求證:平面FAC⊥平面EFC;(2)求多面體ABCDEF的體積19.(12分)在平面直角坐標(biāo)系中,已知點,,過點的動直線與過點的動直線的交點為P,,的斜率均存在且乘積為,設(shè)動點Р的軌跡為曲線C.(1)求曲線C的方程;(2)若點M在曲線C上,過點M且垂直于OM的直線交C于另一點N,點M關(guān)于原點O的對稱點為Q.直線NQ交x軸于點T,求的最大值.20.(12分)已知函數(shù)的導(dǎo)函數(shù)為,且滿足(1)求及的值;(2)求在點處的切線方程21.(12分)求滿足下列條件的圓錐曲線方程的標(biāo)準(zhǔn)方程.(1)經(jīng)過點,兩點的橢圓;(2)與雙曲線-=1有相同的漸近線且經(jīng)過點的雙曲線.22.(10分)已知函數(shù)(1)求的單調(diào)區(qū)間;(2)若,求的最大值與最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求導(dǎo)后,令,可求得,再利用導(dǎo)數(shù)可得為減函數(shù),比較的大小后,根據(jù)為減函數(shù)可得答案.【詳解】由題意得,,,解得,所以所以,所以為減函數(shù)因為,所以,故選:B【點睛】關(guān)鍵點點睛:比較大小的關(guān)鍵是知道的單調(diào)性,利用導(dǎo)數(shù)可得的單調(diào)性.2、D【解析】以雙曲線的兩條漸近線作為邊界條件,即可保證直線與雙曲線的右支只有一個交點.【詳解】雙曲線:的兩條漸近線為和兩漸近線的傾斜角分別為和由經(jīng)過點的直線與雙曲線的右支只有一個交點,可知直線的傾斜角取值范圍為,故直線的斜率的取值范圍是故選:D3、B【解析】根據(jù)空間向量的加減運算推出,進(jìn)而得出結(jié)果.【詳解】因為,所以,故選:B4、D【解析】求出拋物線C的準(zhǔn)線l的方程,過A作l的垂線段,結(jié)合幾何意義及拋物線定義即可得解.【詳解】拋物線的準(zhǔn)線l:,顯然點A在拋物線C內(nèi),過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點P的點,過作于點N,連PF,AN,,由拋物線定義知,,于是得,即點P是過A作準(zhǔn)線l的垂線與拋物線C的交點時,取最小值,所以的最小值為3.故選:D5、B【解析】由題意知,m,n是方程的根,再根據(jù)兩點式求出直線方程,利用圓心到直線的距離與半徑之間的關(guān)系即可求解.【詳解】由題意知,m,n是方程的根,,,過,兩點的直線方程為:,圓心到直線的距離為:,故直線和圓相切,故選:B【點睛】本題考查了直線與圓的位置關(guān)系,考查了計算求解能力,屬于基礎(chǔ)題.6、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到韋達(dá)定理,求得,利用拋物線定義,將目標(biāo)式轉(zhuǎn)化為關(guān)于的代數(shù)式,消元后,利用基本不等式即可求得結(jié)果.【詳解】因為拋物線的焦點的坐標(biāo)為,顯然要滿足題意,直線的斜率存在,設(shè)直線的方程為聯(lián)立可得,其,設(shè)坐標(biāo)為,顯然,則,,根據(jù)拋物線定義,MF=故=4+4令,故4+4當(dāng)且僅當(dāng),即時取得最小值.故選:D.【點睛】本題考察拋物線中的最值問題,涉及到韋達(dá)定理的使用,基本不等式的使用;其中利用的關(guān)系,以及拋物線的定義轉(zhuǎn)化目標(biāo)式,是解決問題的關(guān)鍵.7、B【解析】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項都為奇數(shù),再根據(jù)an=,即可求出數(shù)列{an}的前36項和【詳解】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項都為奇數(shù),∴前36項共有12項為偶數(shù),∴數(shù)列{an}的前36項和為12×1+24×0=12.故選:B8、A【解析】利用獨立事件計算出甲、乙各自贏得賭金的概率,由此可求得兩人各分配的金額.【詳解】甲贏得法郎的概率為,乙贏得法郎的概率為,因此,這法郎中分配給甲法郎,分配給乙法郎.故選:A.9、D【解析】利用給定的通項公式直接計算即得.【詳解】因數(shù)列的通項公式為,則有,所以.故選:D10、C【解析】應(yīng)用向量的坐標(biāo)表示求的坐標(biāo),由且列方程求y值.【詳解】由題設(shè),,則且,所以,即,可得.故選:C11、A【解析】由向量與平面法向量的關(guān)系判斷直線與平面的位置關(guān)系【詳解】因為,所以,所以故選:A12、C【解析】根據(jù)雙曲線方程寫出漸近線方程,得出,進(jìn)而可求出雙曲線的離心率.【詳解】因為雙曲線的漸近線方程為,又其中一條漸近線的傾斜角為,所以,則,所以該雙曲線離心率為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立空間直角坐標(biāo)系,求出異面直線與的方向向量,再求出兩向量的夾角,進(jìn)而可得異面直線與所成角的大小【詳解】解:建立如圖所示的空間直角坐標(biāo)系:在長方體中,,,,,,,,,,異面直線與所成角的大小是故答案為:14、【解析】利用導(dǎo)數(shù)可求得函數(shù)的最小值,要使函數(shù)有零點,只要,求得函數(shù)的最小值,即可得解.【詳解】解:,當(dāng)時,,當(dāng)時,,所以在上遞減,在上遞增,所以,因為函數(shù)有零點,所以,解得.故答案為:.15、【解析】由題意可得,化簡整理得到,進(jìn)而可求出結(jié)果.【詳解】因為雙曲線的一個焦點到其一條漸近線為,所有由題意可得,即,則,所以離心率,故答案為:.16、【解析】相關(guān)點法求解軌跡方程.【詳解】設(shè),則,則,即,因為,代入可得,即的軌跡方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由給定條件結(jié)合橢圓標(biāo)準(zhǔn)方程的特征列不等式求解作答.(2)求命題q真時的t值范圍,再借助“或”聯(lián)結(jié)的命題為真命題求解作答.【小問1詳解】因方程所表示的曲線為焦點在x軸上的橢圓,則有,解得,所以實數(shù)t的取值范圍是.【小問2詳解】,則有,當(dāng)且僅當(dāng),即時取“=”,即,因當(dāng)時,函數(shù)恒成立,則,解得,命題q為真命題有,因為假命題,且為真命題,則與一真一假,當(dāng)p真q假時,,當(dāng)p假q真時,,所以實數(shù)t的取值范圍是.18、(1)證明見解析;(2).【解析】(1)連接BD交AC于點O,設(shè)FC的中點為P,連接OP,EP,證明BD//EP,BD⊥平面FAC即可推理作答.(2)求出三棱錐和四棱錐的體積即可計算作答.【小問1詳解】連接BD交AC于點O,設(shè)FC的中點為P,連接OP,EP,如圖,菱形ABCD中,O為AC的中點,則OP//FA,且,而ED//FA,且FA=2ED,于是得OP//ED,且OP=ED,即有四邊形OPED為平行四邊形,則OD//EP,即BD//EP,因為FA⊥平面ABCD,BD平面ABCD,則FA⊥BD,又四邊形ABCD是菱形,即BD⊥AC,而FAAC=A,平面FAC,因此,BD⊥平面FAC,即EP⊥平面FAC,又EP平面EFC,所以平面FAC⊥平面EFC.【小問2詳解】由已知,是正三角形,,則,取AD的中點G,連接CG,而△ACD為正三角形,從而有CG⊥AD,且,因FA⊥平面ABCD,F(xiàn)A平面ADEF,則平面ADEF⊥平面ABCD,又平面ADEF平面ABCD=AD,而CG平面ABCD,因此,CG⊥平面ADEF,則點C到平面ADEF的距離為,又,于是得,所以多面體ABCDEF的體積.19、(1)(2)【解析】(1)設(shè)點坐標(biāo)為,根據(jù)兩直線的斜率之積為得到方程,整理即可;(2)設(shè),,,根據(jù)設(shè)、在橢圓上,則,再由,則,即可表示出直線、的方程,聯(lián)立兩直線方程,即可得到點的縱坐標(biāo),再根據(jù)弦長公式得到,令,則,最后利用基本不等式計算可得;【小問1詳解】解:設(shè)點坐標(biāo)為,定點,,直線與直線的斜率之積為,,【小問2詳解】解:設(shè),,,則,,所以又,所以,又即,則直線:,直線:,由,解得,即,所以令,則,所以因為,當(dāng)且僅當(dāng)即時取等號,所以的最大值為;20、(1);;(2).【解析】(1)由題可得,進(jìn)而可得,然后可得,即得;(2)由題可求,,再利用點斜式即得.【小問1詳解】∵,∴,,∴,,∴.【小問2詳解】∵,,∴,,∴在點處的切線方程為,即.21、(1);(2)【解析】(1)由題意可得,,從而可求出橢圓的標(biāo)準(zhǔn)方程,(2)由題意設(shè)雙曲線的共漸近線方程為,再將的坐標(biāo)代入方程可求出的值,從而可求出雙曲線方程【小問1詳解】因為,所以P、Q分別是橢圓長軸和短軸上的端點,且橢圓的焦點在x軸上,所以,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè)與雙曲線共漸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論