吉林省遼河高級中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第1頁
吉林省遼河高級中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第2頁
吉林省遼河高級中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第3頁
吉林省遼河高級中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第4頁
吉林省遼河高級中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省遼河高級中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若正實數(shù)、滿足,且不等式有解,則實數(shù)取值范圍是()A.或 B.或C. D.2.橢圓與(0<k<9)的()A.長軸的長相等B.短軸的長相等C.離心率相等D.焦距相等3.設(shè),分別為具有公共焦點與橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為A. B.1C.2 D.不確定4.為了更好地研究雙曲線,某校高二年級的一位數(shù)學老師制作了一個如圖所示的雙曲線模型.已知該模型左、右兩側(cè)的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點與點,點與點均關(guān)于該雙曲線的對稱中心對稱,且,則()A. B.C. D.5.等比數(shù)列中,,則()A. B.C.2 D.46.若a>b,c>d,則下列不等式中一定正確的是()A. B.C. D.7.阿基米德(公元前287年~公元前212年)不僅是著名物理學家,也是著名的數(shù)學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標軸,焦點在軸上,且橢圓的離心率為,面積為,則橢圓的標準方程為()A B.C. D.8.算盤是中國古代的一項重要發(fā)明.現(xiàn)有一種算盤(如圖1),共兩檔,自右向左分別表示個位和十位,檔中橫以梁,梁上一珠撥下,記作數(shù)字5,梁下五珠,上撥一珠記作數(shù)字1(如圖2中算盤表示整數(shù)51).如果撥動圖1算盤中的兩枚算珠,可以表示不同整數(shù)的個數(shù)為()A.8 B.10C.15 D.169.某班級從5名同學中挑出2名同學進行大掃除,若小王和小張在這5名同學之中,則小王和小張都沒有被挑出的概率為()A. B.C. D.10.已知是定義在上的奇函數(shù),對任意兩個不相等的正數(shù)、都有,記,,,則()A. B.C. D.11.當圓的圓心到直線的距離最大時,()A B.C. D.12.準線方程為的拋物線的標準方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與圓有公共點,則b的取值范圍是_____14.已知函數(shù),則函數(shù)在上的最大值為_______15.已知函數(shù)有且僅有兩個不同的零點,則實數(shù)的取值范圍是__________.16.已知復數(shù)對應(yīng)的點在復平面第一象限內(nèi),甲、乙、丙三人對復數(shù)的陳述如下為虛數(shù)單位:甲:;乙:;丙:,在甲、乙、丙三人陳述中,有且只有兩個人的陳述正確,則復數(shù)______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(I)當時,求曲線在處的切線方程;(Ⅱ)若當時,,求的取值范圍.18.(12分)已知等差數(shù)列滿足:,(1)求數(shù)列的通項公式,以及前n項和公式;(2)若,求數(shù)列的前n項和19.(12分)某電腦公司為調(diào)查旗下A品牌電腦的使用情況,隨機抽取200名用戶,根據(jù)不同年齡段(單位:歲)統(tǒng)計如下表:分組頻率/組距0.010.040.070.060.02(1)根據(jù)上表,試估計樣本的中位數(shù)、平均數(shù)(同一組數(shù)據(jù)以該組區(qū)間的中點值為代表,結(jié)果精確到0.1);(2)按照年齡段從內(nèi)的用戶中進行分層抽樣,抽取6人,再從中隨機選取2人贈送小禮品,求恰有1人在內(nèi)的概率20.(12分)已知E,F(xiàn)分別是正方體的棱BC和CD的中點(1)求與所成角的大??;(2)求與平面所成角的余弦值21.(12分)已知函數(shù)(其中為自然對數(shù)底數(shù))(1)討論函數(shù)的單調(diào)性;(2)當時,若恒成立,求實數(shù)的取值范圍.22.(10分)已知函數(shù),其中(1)討論的單調(diào)性;(2)若不等式對一切恒成立,求實數(shù)k的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,可得出關(guān)于實數(shù)的不等式,解之即可.【詳解】因為正實數(shù)、滿足,則,即,所以,,當且僅當時,即當時,等號成立,即的最小值為,因為不等式有解,則,即,即,解得或.故選:A.II卷2、D【解析】根據(jù)橢圓方程求得兩個橢圓的,由此確定正確選項.【詳解】橢圓與(0<k<9)的焦點分別在x軸和y軸上,前者a2=25,b2=9,則c2=16,后者a2=25-k,b2=9-k,則顯然只有D正確故選:D3、C【解析】根據(jù)題意,設(shè)它們共同的焦距為2c、橢圓的長軸長2a、雙曲線的實軸長為2m,由橢圓和雙曲線的定義及勾弦定理建立關(guān)于a、c、m的方程,聯(lián)解可得a2+m2=2c2,再根據(jù)離心率的定義求解【詳解】由題意設(shè)焦距為2c,橢圓的長軸長2a,雙曲線的實軸長為2m,設(shè)P在雙曲線的右支上,由雙曲線的定義得|PF1|﹣|PF2|=2m①由橢圓的定義|PF1|+|PF2|=2a②又∵,∴,可得∠F1PF2=900,故|PF1|2+|PF2|2=4c2③,①平方+②平方,得|PF1|2+|PF2|2=2a2+2m2④將④代入③,化簡得a2+m2=2c2,即,可得,所以=.故選:C4、D【解析】依題意以雙曲線的對稱中心為坐標原點建系,設(shè)雙曲線的方程為,根據(jù)已知求得,點縱坐標代入計算即可求得橫坐標得出結(jié)果.【詳解】以雙曲線的對稱中心為坐標原點,建立平面直角坐標系,因為雙曲線的離心率為2,所以可設(shè)雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因為,所以的縱坐標為18.由,得,故.故選:D.5、D【解析】利用等比數(shù)列的下標特點,即可得到結(jié)果.【詳解】∵,∴,∴,∴.故選:D6、B【解析】根據(jù)不等式的性質(zhì)及反例判斷各個選項.【詳解】因為c>d,所以,所以,所以B正確;時,不滿足選項A;時,,且,所以不滿足選項CD;故選:B7、C【解析】由題意,設(shè)出橢圓的標準方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.8、A【解析】根據(jù)給定條件分類探求出撥動兩枚算珠的結(jié)果計算得解.【詳解】撥動圖1算盤中的兩枚算珠,有兩類辦法,由于撥動一枚算珠有梁上、梁下之分,則只在一個檔撥動兩枚算珠共有4種方法,在每一個檔各撥動一枚算珠共有4種方法,由分類加法計數(shù)原理得共有8種方法,所以表示不同整數(shù)的個數(shù)為8.故選:A9、B【解析】記另3名同學分別為a,b,c,應(yīng)用列舉法求古典概型的概率即可.【詳解】記另3名同學分別為a,b,c,所以基本事件為,,(a,小王),(a,小張),,(b,小王),(b,小張),(c,小王),(c,小張),(小王,小張),共10種小王和小張都沒有被挑出包括的基本事件為,,,共3種,綜上,小王和小張都沒有挑出的概率為故選:B.10、A【解析】由題,可得是定義在上的偶函數(shù),且在上單調(diào)遞減,在上單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性,即可判斷出的大小關(guān)系.【詳解】設(shè),由題,得,即,所以函數(shù)在上單調(diào)遞減,因為是定義在R上的奇函數(shù),所以是定義在上的偶函數(shù),因此,,,即.故選:A【點睛】本題主要考查利用函數(shù)的單調(diào)性判斷大小的問題,其中涉及到構(gòu)造函數(shù)的運用.11、C【解析】求出圓心坐標和直線過定點,當圓心和定點的連線與直線垂直時滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因為圓的圓心為,半徑,又因為直線過定點A(-1,1),故當與直線垂直時,圓心到直線的距離最大,此時有,即,解得.故選:C.12、D【解析】的準線方程為.【詳解】的準線方程為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直線與圓有交點,則圓心到直線的距離小于或等于半徑.【詳解】直線即,圓的圓心為,半徑為,若直線與圓有交點,則,解得,故實數(shù)取值范圍是.故答案為:14、【解析】利用導數(shù)單調(diào)性求出的單調(diào)性,比較極小值與兩端點,的大小求出在上的最大值.【詳解】因為,則,令,即時,函數(shù)單調(diào)遞增.令,即時,函數(shù)單調(diào)遞減.所以的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)的極小值也是函數(shù)的最小值.,兩端點為,,即最大值為.故答案為:.15、【解析】函數(shù)有兩個不同零點即y=a與g(x)=圖像有兩個交點,畫出近似圖象即得a的范圍﹒【詳解】∵函數(shù)有且僅有兩個不同的零點,令,則y=a與g(x)=圖像有兩個交點,∵,∴當時,,單調(diào)遞減,當時,,單調(diào)遞增,∴當時,,作出函數(shù)與的圖象,∴當時,y=a與g(x)有兩個交點﹒故答案為:﹒16、##【解析】設(shè),則,然后分別求出甲,乙,丙對應(yīng)的結(jié)論,先假設(shè)甲正確,則得出乙錯誤,丙正確,由此即可求解【詳解】解:設(shè),則,甲:由可得,則,乙:由可得:,丙:由可得,即,所以,若,則,則不成立,,則,解得或,所以甲,丙正確,乙錯誤,此時或,又復數(shù)對應(yīng)的點在復平面第一象限內(nèi),所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(Ⅰ)先求的定義域,再求,,,由直線方程的點斜式可求曲線在處的切線方程為(Ⅱ)構(gòu)造新函數(shù),對實數(shù)分類討論,用導數(shù)法求解.試題解析:(I)定義域為.當時,,曲線在處的切線方程為(II)當時,等價于設(shè),則,(i)當,時,,故在上單調(diào)遞增,因此;(ii)當時,令得.由和得,故當時,,在單調(diào)遞減,因此.綜上,的取值范圍是【考點】導數(shù)的幾何意義,利用導數(shù)判斷函數(shù)的單調(diào)性【名師點睛】求函數(shù)的單調(diào)區(qū)間的方法:(1)確定函數(shù)y=f(x)定義域;(2)求導數(shù)y′=f′(x);(3)解不等式f′(x)>0,解集在定義域內(nèi)的部分為單調(diào)遞增區(qū)間;(4)解不等式f′(x)<0,解集在定義域內(nèi)的部分為單調(diào)遞減區(qū)間18、(1),(2)【解析】(1)由,,列出方程組,求得,即可求得數(shù)列的通項公式,利用公式可得.(2)由(1)求得,結(jié)合“裂項法”求和,即可求解.【詳解】(1)設(shè)等差數(shù)列的公差為,因為,,可得,解得,所以數(shù)列的通項公式.(2)由(1)知,可得,所以數(shù)列的前項和:.【點睛】關(guān)鍵點睛:本題主要考查了等差數(shù)列的通項公式的求解,以及“裂項法”求和的應(yīng)用,解答本題的關(guān)鍵是將的通項裂成兩項的差,利用裂項相消求和,屬于中檔題.19、(1)中位數(shù)為38.6,平均數(shù)為38.5歲;(2).【解析】(1)由中位數(shù)分數(shù)據(jù)兩邊的頻率相等,列方程求中位數(shù);根據(jù)各組數(shù)據(jù)的中點數(shù)乘以頻率即可得平均數(shù);(2)由分層抽樣確定從中各抽4人、2人,列舉出隨機選取2人的所有組合,得到恰有1人在的組合數(shù),即可求概率.【詳解】(1)中位數(shù)在中,設(shè)為,則,解得.平均數(shù)為歲.所以樣本的中位數(shù)約為38.6,平均數(shù)為38.5歲.(2)根據(jù)分層抽樣法,其中位于中的有4人,記為,,,;位于中的有2人,記為,.從6人中抽取2人,有,,,,,,,,,,,,,,,共15種情況,恰有1人在內(nèi)的有,,,,,,,,共8種情況,∴恰有1人在內(nèi)的概率為.【點睛】關(guān)鍵點點睛:由中位數(shù)的性質(zhì)以及平均數(shù)與各組數(shù)據(jù)中點值、頻率的關(guān)系求中位數(shù)、平均數(shù);根據(jù)分層抽樣確定各組選取人數(shù),利用列舉法求概率.20、(1)60°;(2).【解析】(1)建立空間直角坐標系,利用空間向量夾角的坐標公式即可求出異面直線所成角的余弦值,進而結(jié)合異面直線成角的范圍即可求出結(jié)果;(2)建立空間直角坐標系,利用空間向量夾角的坐標公式即可求出求出線面角的正弦值,進而結(jié)合線面角的范圍即可求出結(jié)果;【小問1詳解】以AB,AD,所在直線分別為x,y,z軸建立如圖所示的空間直角坐標系,設(shè)正方體的棱長為,則,,,,所以,,設(shè)與EF所成角的大小為,則,因為異面直線成角的范圍是,所以與所成角的大小為60°【小問2詳解】設(shè)平面的法向量為,與平面所成角為,因為,,所以,,所以,令,得為平面的一個法向量,又因為,所以,所以21、(1)答案見解析(2)【解析】(1),進而分,,三種情況討論求解即可;(2)由題意知在上恒成立,故令,再根據(jù)導數(shù)研究函數(shù)的最小值,注意到使,進而結(jié)合函數(shù)隱零點求解即可.【小問1詳解】解:①,在上單調(diào)增;②,令,單調(diào)減單調(diào)增;③,單調(diào)增單調(diào)減.綜上,當時,在上單調(diào)增;當時,在上單調(diào)遞減,在上單調(diào)遞增;當時,在上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】解:由題意知在上恒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論