版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
河南省安陽一中2026屆高二數(shù)學第一學期期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在上是單調(diào)遞增函數(shù),則的最大值等于()A.2 B.3C.5 D.62.《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,冬至、立春、春分日影之和為三丈一尺五寸,前九個節(jié)氣日影之和為八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),問立夏日影長為()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸3.設,則A.2 B.3C.4 D.54.設雙曲線的左、右頂點分別為、,左、右焦點分別為、,以為直徑的圓與雙曲線左支的一個交點為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.5.在空間直角坐標系中,點關于軸的對稱點為點,則點到直線的距離為()A. B.C. D.66.已知為坐標原點,向量,點,.若點在直線上,且,則點的坐標為().A. B.C. D.7.圓的圓心到直線的距離為2,則()A. B.C. D.28.口袋中裝有大小形狀相同的紅球3個,白球3個,小明從中不放回的逐一取球,已知在第一次取得紅球的條件下,第二次取得白球的概率為()A.0.4 B.0.5C.0.6 D.0.759.已知是橢圓兩個焦點,P在橢圓上,,且當時,的面積最大,則橢圓的標準方程為()A. B.C. D.10.已知直線為拋物線的準線,直線經(jīng)過拋物線的焦點,與拋物線交于點,則的最小值為()A. B.C.4 D.811.設為空間中的四個不同點,則“中有三點在同一條直線上”是“在同一個平面上”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件12.學校開設甲類選修課3門,乙類選修課4門,從中任選3門,甲乙兩類課程都有選擇的不同選法種數(shù)為()A.24 B.30C.60 D.120二、填空題:本題共4小題,每小題5分,共20分。13.已知圓C:和點,若點N為圓C上一動點,點Q為平面上一點且,則Q點縱坐標的最大值為______14.如圖,某湖有一半徑為的半圓形岸邊,現(xiàn)決定在圓心O處設立一個水文監(jiān)測中心(大小忽略不計),在其正東方向相距的點A處安裝一套監(jiān)測設備.為了監(jiān)測數(shù)據(jù)更加準確,在半圓弧上的點B以及湖中的點C處,再分別安裝一套監(jiān)測設備,且,.定義:四邊形及其內(nèi)部區(qū)域為“直接監(jiān)測覆蓋區(qū)域”,設.則“直接監(jiān)測覆蓋區(qū)域”面積的最大值為________15.已知曲線,①若,則是橢圓,其焦點在軸上;②若,則是圓,其半徑為;③若,則是雙曲線,其漸近線方程為;④若,,則是兩條直線.以上四個命題,其中正確的序號為_________.16.若,則與向量同方向的單位向量的坐標為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在柯橋古鎮(zhèn)的開發(fā)中,為保護古橋OA,規(guī)劃在O的正東方向100m的C處向?qū)Π禔B建一座新橋,使新橋BC與河岸AB垂直,并設立一個以線段OA上一點M為圓心,與直線BC相切的圓形保護區(qū)(如圖所示),且古橋兩端O和A與圓上任意一點的距離都不小于50m,經(jīng)測量,點A位于點O正南方向25m,,建立如圖所示直角坐標系(1)求新橋BC的長度;(2)當OM多長時,圓形保護區(qū)的面積最???18.(12分)已知橢圓,焦點,A,B是上關于原點對稱的兩點,的周長的最小值為(1)求的方程;(2)直線FA與交于點M(異于點A),直線FB與交于點N(異于點B),證明:直線MN過定點19.(12分)已知橢圓C:()的離心率為,并且經(jīng)過點,(1)求橢圓C的方程;(2)設點關于坐標原點的對稱點為,點為橢圓C上任意一點,直線的斜率分別為,,求證:為定值20.(12分)已知拋物線過點,是拋物線的焦點,直線交拋物線于另一點,為坐標原點.(1)求拋物線的方程和焦點的坐標;(2)拋物線的準線上是否存在點使,若存在請求出點坐標,若不存在請說明理由.21.(12分)已知,,(1)若,為真命題,為假命題,求實數(shù)x的取值范圍;(2)若是的充分不必要條件,求實數(shù)m的取值范圍22.(10分)設AB是過拋物線焦點F的弦,若,,求證:(1);(2)(為弦AB的傾斜角)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù),得到在[1,+∞)上,恒成立,從而解得a≤3,故a的最大值為3【詳解】解:∵f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù)∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)時,3x2≥3恒成立,∴a≤3,∴a的最大值是3故選:B2、D【解析】結(jié)合等差數(shù)列知識求得正確答案.【詳解】設冬至日影長,公差為,則,所以立夏日影長丈,即四尺五寸.故選:D3、B【解析】利用復數(shù)的除法運算求出,進而可得到.【詳解】,則,故,選B.【點睛】本題考查了復數(shù)的四則運算,考查了復數(shù)的模,屬于基礎題4、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進而求出的面積【詳解】雙曲線的方程為:,,設以為直徑的圓與直線相切與點,則,且,,∥.又為的中點,,又,,的面積為:.故選:C5、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.6、A【解析】由在直線上,設,再利用向量垂直,可得,進而可求E點坐標.【詳解】因為在直線上,故存在實數(shù)使得,.若,則,所以,解得,因此點的坐標為.故選:A.【定睛】本題考查了空間向量的共線和數(shù)量積運算,考查了運算求解能力和邏輯推理能力,屬于一般題目.7、B【解析】配方求出圓心坐標,再由點到直線距離公式計算【詳解】圓的標準方程是,圓心為,∴,解得故選:B.【點睛】本題考查圓的標準方程,考查點到直線距離公式,屬于基礎題8、C【解析】求出第一次取得紅球的事件、第一次取紅球第二次取白球的事件概率,再利用條件概率公式計算作答.【詳解】記“第一次取得紅球”為事件A,“第二次取得白球”為事件B,則,,于是得,所以在第一次取得紅球的條件下,第二次取得白球的概率為0.6.故選:C9、A【解析】由題意知c=3,當△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,即可解出【詳解】由題意知c=3,當△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,∵時,△F1PF2的面積最大,∴a==,b=∴橢圓的標準方程為故選:A10、D【解析】先求拋物線的方程,再聯(lián)立直線方程和拋物線方程,由弦長公式可求的最小值.【詳解】因為直線為拋物線的準線,故即,故拋物線方程為:.設直線,則,,而,當且僅當?shù)忍柍闪?,故的最小值?,故選:D.11、A【解析】由公理2的推論即可得到答案.【詳解】由公理2的推論:過一條直線和直線外一點,有且只有一個平面,可得在同一平面,故充分條件成立;由公理2的推論:過兩條平行直線,有且只有一個平面,可得,當時,同一個平面上,但中無三點共線,故必要條件不成立;故選:A【點睛】本題考查點線面的位置關系和充分必要條件的判斷,重點考查公理2及其推論;屬于中檔題;公理2的三個推論:經(jīng)過一條直線和直線外一點,有且只有一個平面;經(jīng)過兩條平行直線,有且只有一個平面;經(jīng)過兩條相交直線,有且只有一個平面;12、B【解析】利用組合數(shù)計算出正確答案.【詳解】甲乙兩類課程都有選擇的不同選法種數(shù)為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設出點N的坐標,探求出點Q的軌跡,再求出軌跡上在x軸上方且距離x軸最遠的點的縱坐標表達式,借助函數(shù)最值計算作答.【詳解】圓C:的圓心,半徑,圓C與x軸相切,依題意,點M在圓C上,設點,則,線段MN中點,因,則點Q的軌跡是以線段MN為直徑的圓(除點M,N外),這個軌跡在x軸上方,于是得這個軌跡上的點到x軸的最大距離為:令,于是得,當,即時,,所以Q點縱坐標的最大值為.故答案為:【點睛】結(jié)論點睛:圓上的點到定直線距離的最大值等于圓心到該直線距離加半徑.14、【解析】由題意,根據(jù)余弦定理得的值,則四邊形的面積表示為,再代入面積公式化簡為三角函數(shù),根據(jù)三角函數(shù)的性質(zhì)求解最大值即可.【詳解】在中,,,,,,則(其中),當時,取最大值,所以“直接監(jiān)測覆蓋區(qū)域”面積的最大值.故答案為:.【點睛】解答本題的關鍵是將四邊形的面積表示為,代入面積公式后化簡得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì)求解最大值.15、①③④【解析】通過m,n的取值判斷焦點坐標所在軸,判斷①,求出圓的半徑判斷②;通過求解雙曲線的漸近線方程,判斷③;利用,,判斷曲線是否是兩條直線判斷④【詳解】解:①若,則,因為方程化為:,焦點坐標在y軸,所以①正確;②若,則C是圓,其半徑為:,不一定是,所以②不正確;③若,則C是雙曲線,其漸近線方程為,化簡可得,所以③正確;④若,,方程化為,則C是兩條直線,所以④正確;故答案為:①③④16、【解析】由空間向量的模的計算求得向量的模,再由單位向量的定義求得答案.【詳解】解:因為,所以,所以與向量同方向的單位向量的坐標為,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)80m;(2).【解析】(1)根據(jù)斜率的公式,結(jié)合解方程組法和兩點間距離公式進行求解即可;(2)根據(jù)圓的切線性質(zhì)進行求解即可.【小問1詳解】由題意,可知,,∵∴直線BC方程:①,同理可得:直線AB方程:②由①②可知,∴,從而得故新橋BC得長度為80m【小問2詳解】設,則,圓心,∵直線BC與圓M相切,∴半徑,又因為,∵∴,所以當時,圓M的面積達到最小18、(1)(2)證明見解析【解析】(1)設橢圓的左焦點為,根據(jù)橢圓的對稱性可得,則三角形的周長為,再設根據(jù)二次函數(shù)的性質(zhì)得到,即可求出的周長的最小值為,從而得到,再根據(jù),即可求出、,從而求出橢圓方程;(2)設直線MN的方程,,,,聯(lián)立直線與橢圓方程,消元列出韋達定理,再設直線的方程、,直線的方程、,聯(lián)立直線方程,消元列出韋達定理,即可表示,即可得到,整理得,再代入,,即可得到,從而求出,即可得解;【小問1詳解】設橢圓的左焦點為,則由對稱性,,所以的周長為設,則,當A,B是橢圓的上下頂點時,的周長取得最小,所以,即,又橢圓焦點,所以,所以,所以,解得,,所以橢圓的方程為.【小問2詳解】解:當A,B為橢圓左右頂點時,直線MN與x軸重合;當A,B為橢圓上下頂點時,可得直線MN的方程為;設直線MN的方程,,,,由得,,,,設直線的方程,其中,,,由得,,,,設直線的方程,其中,,由得,,,所以,所以,所以,則,即,代入,,得,整理得,又所以,直線MN的方程為,綜上直線MN過定點19、(1)(2)證明見解析【解析】(1)根據(jù)題意可列出關于的三個方程,解出即可得到橢圓C的方程;(2)根據(jù)對稱可得點坐標,再根據(jù)斜率公式可得,然后由點為橢圓C上的點得,代入化簡即可求出為定值【小問1詳解】由題意解得,.所以橢圓C的方程為.【小問2詳解】因為點關于坐標原點的對稱點為,所以的坐標為.,,所以,又因為點為橢圓C上的點,所以.20、(1)拋物線的方程為,焦點坐標為(2)存在,且【解析】(1)根據(jù)點坐標求得,進而求得拋物線的方程和焦點的坐標.(2)設,根據(jù)列方程,化簡求得的坐標.【小問1詳解】將代入得,所以拋物線的方程為,焦點坐標為.【小問2詳解】存在,理由如下:直線的方程為,或,即.拋物線的準線,設,,即,所以.即存在點使.21、(1);(2)【解析】(1)化簡命題p,將m=3代入求出命題q,再根據(jù)或、且連接的命題真假確定p,q真假即可得解;(2)由給定條件可得p是q的必要不充分條件,再列式計算作答.【詳解】(1)依題意,:,當時,:,因為真命題,為假命題,則與一真一假,當真假時,即且或,無解,當假真時,即或且,解得或,綜上得:或,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年新版膜世界協(xié)議
- 2026年新版半骨盆贗復協(xié)議
- 2024年芮城縣招教考試備考題庫附答案解析(奪冠)
- 品社國際間的交往課件
- 2024年道真仡佬族苗族自治縣招教考試備考題庫附答案解析(必刷)
- 2025年順德職業(yè)技術學院單招職業(yè)傾向性測試題庫附答案解析
- 2025年西安電力機械制造公司機電學院單招職業(yè)技能考試題庫附答案解析
- 2025年天津美術學院馬克思主義基本原理概論期末考試模擬題含答案解析(奪冠)
- 2025年河北醫(yī)科大學馬克思主義基本原理概論期末考試模擬題及答案解析(必刷)
- 2024年湄洲灣職業(yè)技術學院馬克思主義基本原理概論期末考試題及答案解析(奪冠)
- 長期照護師知識考核試卷及答案
- 測繪服務收費標準更新及執(zhí)行指南
- 鐵路隧道及地下工程施工階段異常工況安全處置指導意見暫行
- 月臺修復施工方案
- 康養(yǎng)醫(yī)院企劃方案(3篇)
- 2025年成都市中考化學試題卷(含答案解析)
- 中泰飲食文化交流與傳播對比研究
- QGDW11486-2022繼電保護和安全自動裝置驗收規(guī)范
- 2025招商局集團有限公司所屬單位崗位合集筆試參考題庫附帶答案詳解
- 寧夏的伊斯蘭教派與門宦
- 山東師范大學期末考試大學英語(本科)題庫含答案
評論
0/150
提交評論