版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省懷化市中方縣第二中學(xué)2026屆高三數(shù)學(xué)第一學(xué)期期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.設(shè),是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則3.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.4.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形5.已知復(fù)數(shù)滿足,則的最大值為()A. B. C. D.66.寧波古圣王陽明的《傳習(xí)錄》專門講過易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.7.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為5的概率為A. B. C. D.8.若復(fù)數(shù)z滿足,則()A. B. C. D.9.已知F為拋物線y2=4x的焦點,過點F且斜率為1的直線交拋物線于A,B兩點,則||FA|﹣|FB||的值等于()A. B.8 C. D.410.已知是虛數(shù)單位,則()A. B. C. D.11.若為純虛數(shù),則z=()A. B.6i C. D.2012.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.3二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)列滿足遞推公式,且,則___________.14.已知變量(m>0),且,若恒成立,則m的最大值________.15.設(shè)隨機變量服從正態(tài)分布,若,則的值是______.16.已知二項式的展開式中各項的二項式系數(shù)和為512,其展開式中第四項的系數(shù)__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若不等式恒成立,求實數(shù)的取值范圍.18.(12分)若養(yǎng)殖場每個月生豬的死亡率不超過,則該養(yǎng)殖場考核為合格,該養(yǎng)殖場在2019年1月到8月養(yǎng)殖生豬的相關(guān)數(shù)據(jù)如下表所示:月份1月2月3月4月5月6月7月8月月養(yǎng)殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數(shù)/只293749537798126145(1)從該養(yǎng)殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;(2)根據(jù)1月到8月的數(shù)據(jù),求出月利潤y(十萬元)關(guān)于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).(3)預(yù)計在今后的養(yǎng)殖中,月利潤與月養(yǎng)殖量仍然服從(2)中的關(guān)系,若9月份的養(yǎng)殖量為1.5萬只,試估計:該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,參考數(shù)據(jù):.19.(12分)在平面直角坐標系xOy中,曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的極坐標方程;(2)設(shè)和交點的交點為,求的面積.20.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識競賽.(1)設(shè)事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.21.(12分)如圖,在四棱錐中,底面,,,,為的中點,是上的點.(1)若平面,證明:平面.(2)求二面角的余弦值.22.(10分)如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對角線AC與BD交于點O,VO⊥平面ABCD,E是棱VC的中點.(1)求證:VA∥平面BDE;(2)求證:平面VAC⊥平面BDE.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設(shè),整理得到方程組,解方程組即可解決問題.【詳解】設(shè),因為,所以,所以,解得:,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為,此點位于第四象限.故選D【點睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點知識,考查了方程思想,屬于基礎(chǔ)題.2、D【解析】試題分析:,,故選D.考點:點線面的位置關(guān)系.3、D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.4、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質(zhì)及推論.5、B【解析】
設(shè),,利用復(fù)數(shù)幾何意義計算.【詳解】設(shè),由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復(fù)數(shù)模的最大值,其實本題可以利用不等式來解決.6、B【解析】
根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點睛】本題主要考查古典概型的概率,還考查了運算求解的能力,屬于基礎(chǔ)題.7、A【解析】
陽數(shù):,陰數(shù):,然后分析陰數(shù)和陽數(shù)差的絕對值為5的情況數(shù),最后計算相應(yīng)概率.【詳解】因為陽數(shù):,陰數(shù):,所以從陰數(shù)和陽數(shù)中各取一數(shù)差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.8、D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復(fù)數(shù)的運算和模的計算,意在考查學(xué)生對這些知識的理解掌握水平.9、C【解析】
將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關(guān)系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點睛】本題考查了拋物線的定義,直線與拋物線的位置關(guān)系,屬于中檔題.10、B【解析】
根據(jù)復(fù)數(shù)的乘法運算法則,直接計算,即可得出結(jié)果.【詳解】.故選B【點睛】本題主要考查復(fù)數(shù)的乘法,熟記運算法則即可,屬于基礎(chǔ)題型.11、C【解析】
根據(jù)復(fù)數(shù)的乘法運算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時故選:C.【點睛】本題考查復(fù)數(shù)的概念與運算,屬基礎(chǔ)題.12、B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問題的能力,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、2020【解析】
可對左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點睛】本題考查數(shù)列遞推式和累加法的應(yīng)用,屬于基礎(chǔ)題14、【解析】
在不等式兩邊同時取對數(shù),然后構(gòu)造函數(shù)f(x)=,求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】不等式兩邊同時取對數(shù)得,即x2lnx1<x1lnx2,又即成立,設(shè)f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導(dǎo)數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【點睛】本題考查函數(shù)單調(diào)性與導(dǎo)數(shù)之間的應(yīng)用,根據(jù)條件利用取對數(shù)得到不等式,從而可構(gòu)造新函數(shù),是解決本題的關(guān)鍵15、1【解析】
由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態(tài)分布的圖像和性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.16、【解析】
先令可得其展開式各項系數(shù)的和,又由題意得,解得,進而可得其展開式的通項,即可得答案.【詳解】令,則有,解得,則二項式的展開式的通項為,令,則其展開式中的第4項的系數(shù)為,故答案為:【點睛】此題考查二項式定理的應(yīng)用,解題時需要區(qū)分展開式中各項系數(shù)的和與各二項式系數(shù)和,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案不唯一,具體見解析(2)【解析】
(1)分類討論,利用導(dǎo)數(shù)的正負,可得函數(shù)的單調(diào)區(qū)間.(2)分離出參數(shù)后,轉(zhuǎn)化為函數(shù)的最值問題解決,注意函數(shù)定義域.【詳解】(1)由得或①當時,由,得.由,得或此時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.②當時,由,得由,得或此時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和綜上:當時,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和當時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.(2)依題意,不等式恒成立等價于在上恒成立,可得,在上恒成立,設(shè),則令,得,(舍)當時,;當時,當變化時,,變化情況如下表:10單調(diào)遞增單調(diào)遞減∴當時,取得最大值,,∴.∴的取值范圍是.【點睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究不等式的恒成立問題,屬于中檔題.18、(1);(2);(3)利潤約為111.2萬元.【解析】
(1)首先列出基本事件,然后根據(jù)古典概型求出恰好兩個月合格的概率;(2)首先求出利潤y和養(yǎng)殖量x的平均值,然后根據(jù)公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;(3)根據(jù)線性回歸方程代入9月份的數(shù)據(jù)即可求出9月利潤.【詳解】(1)2月到6月中,合格的月份為2,3,4月份,則5個月份任意選取3個月份的基本事件有,,,,,,,,,,共計10個,故恰好有兩個月考核合格的概率為;(2),,,,故;(3)當千只,(十萬元)(萬元),故9月份的利潤約為111.2萬元.【點睛】本題主要考查了古典概型,線性回歸方程的求解和使用,屬于基礎(chǔ)題.19、(1);(2)【解析】
(1)先將曲線的參數(shù)方程化為普通方程,再將普通方程化為極坐標方程即可.(2)將和的極坐標方程聯(lián)立,求得兩個曲線交點的極坐標,即可由極坐標的含義求得的面積.【詳解】(1)曲線的參數(shù)方程為(α為參數(shù)),消去參數(shù)的的直角坐標方程為.所以的極坐標方程為(2)解方程組,得到.所以,則或().當()時,,當()時,.所以和的交點極坐標為:,.所以.故的面積為.【點睛】本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,直角坐標方程與極坐標的轉(zhuǎn)化,利用極坐標求三角形面積,屬于中檔題.20、(1);(2)見解析【解析】
(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因為學(xué)生總數(shù)為1000人,該年級分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點睛】本題考查分層抽樣,考查超幾何分布及期望,考查運算求解能力,是基礎(chǔ)題21、(1)證明見解析(2)【解析】
(1)因為,利用線面平行的判定定理可證出平面,利用點線面的位置關(guān)系,得出和,由于底面,利用線面垂直的性質(zhì),得出,且,最后結(jié)合線面垂直的判定定理得出平面,即可證出平面.(2)由(1)可知,,兩兩垂直,建立空間直角坐標系,標出點坐標,運用空間向量坐標運算求出所需向量,分別求出平面和平面的法向量,最后利用空間二面角公式,即可求出的余弦值.【詳解】(1)證明:因為,平面,平面,所以平面,因為平面,平面,所以可設(shè)平面平面,又因為平面,所以.因為平面,平面,所以,從而得.因為底面,所以.因為,所以.因為,所以平面.綜上,平面.(2)解:由(1)可得,,兩兩垂直,以為原點,,,所在直線分別為,,軸,建立如圖所示的空間直角坐標系.因為,所以,則,,,,所以,,,.設(shè)是平面的法向量,由取取,得.設(shè)是平面的法向量,由得取,得,所以,即的余弦值為.【點睛】本題考查線面垂直的判定和空間二面角的計算,還運用線面平行的性質(zhì)、線面垂直的判定定理、點線面的位置關(guān)系、空間向量的坐標運算等,同時考查學(xué)生的空間想象能力和邏輯推理能力.22、(1)見解析(2)見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基層醫(yī)療衛(wèi)生改革方案研究
- Java程序設(shè)計技術(shù)規(guī)范及要點
- 2026年人際溝通技巧有效溝通策略題庫
- 2026年客戶服務(wù)團隊溝通與問題解決能力測試
- 2026年英語口語與聽力進階訓(xùn)練試題集
- 2026年藝術(shù)學(xué)院入學(xué)模擬試題集
- 2026年建筑設(shè)計師專業(yè)水平認證題庫
- 2026年市場營銷專業(yè)考試案例分析題集
- 2026年市場營銷經(jīng)理市場分析試題
- 2026年品牌營銷總監(jiān)晉升執(zhí)行副總裁實務(wù)題庫
- 滬教版初中英語七年級下冊單詞匯表
- 反向開票協(xié)議書
- 林場管護合同范例
- 春節(jié)后收心培訓(xùn)
- 福建省福州市2023-2024學(xué)年高一上學(xué)期期末質(zhì)量檢測英語試題 含答案
- 二次結(jié)構(gòu)承包合同
- GB/T 44592-2024紅樹林生態(tài)保護修復(fù)技術(shù)規(guī)程
- GB/T 43851-2024制造物流系統(tǒng)互聯(lián)互通通用要求
- 直播運營指南(從主播修煉、平臺運營到商業(yè)獲利)
- 《樹立正確的政績觀》課件
- 產(chǎn)品制造可行性評估報告
評論
0/150
提交評論