版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省杭州外國語學校2026屆高二上數(shù)學期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓和圓恰有三條公共切線,則的最小值為()A.6 B.36C.10 D.2.若圓與圓外切,則()A. B.C. D.3.意大利數(shù)學家斐波那契,以兔子繁殖為例,引入“兔子數(shù)列”,,,,,,,,…,在實際生活中很多花朵的瓣數(shù)恰是斐波那契數(shù)列中的數(shù),斐波那契數(shù)列在物理化學等領(lǐng)域也有著廣泛的應(yīng)用.已知斐波那契數(shù)列滿足:,,,若,則等于()A. B.C. D.4.某商場為了解銷售活動中某商品銷售量與活動時間之間的關(guān)系,隨機統(tǒng)計了某次銷售活動中的商品銷售量與活動時間,并制作了下表:活動時間銷售量由表中數(shù)據(jù)可知,銷售量與活動時間之間具有線性相關(guān)關(guān)系,算得線性回歸方程為,據(jù)此模型預(yù)測當時,的值為()A B.C. D.5.設(shè),“命題”是“命題”的()A.充分且不必要條件 B.必要且不充分條件C.充要條件 D.既不充分也不必要條件6.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.7.已知圓與圓,則兩圓的位置關(guān)系是()A.外切 B.內(nèi)切C.相交 D.相離8.如圖,在三棱錐中,,二面角的正弦值是,則三棱錐外接球的表面積是()A. B.C. D.9.已知雙曲線的離心率為,則該雙曲線的漸近線方程為()A. B.C. D.10.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.11.已知命題:,命題:則是的()條件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要12.若指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個不同的交點,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的兩個焦點分別為,,為雙曲線上一點,且,則的值為________14.二項式的展開式中,項的系數(shù)為__________.15.如圖,在棱長為2的正方體中,點分別是棱的中點,是側(cè)面正方形內(nèi)一點(含邊界),若平面,則線段長度的取值范圍是__________16.已知點和,圓,當圓C與線段沒有公共點時,則實數(shù)m的取值范圍為___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點,圓,點Q在圓上運動,的垂直平分線交于點P.(1)求動點P的軌跡的方程;(2)過點的動直線l交曲線C于A、B兩點,在y軸上是否存在定點T,使以AB為直徑的圓恒過這個點?若存在,求出點T的坐標,若不存在,請說明理由.18.(12分)設(shè)函數(shù).(1)若在點處的切線為,求a,b的值;(2)求的單調(diào)區(qū)間.19.(12分)等差數(shù)列{an}的前n項和記為Sn,且.(1)求數(shù)列{an}的通項公式an(2)記數(shù)列的前n項和為Tn,若,求n的最小值.20.(12分)已知動點到點的距離與點到直線的距離相等.(1)求動點的軌跡方程;(2)若過點且斜率為的直線與動點的軌跡交于、兩點,求三角形AOB的面積.21.(12分)已知為數(shù)列的前項和,且.(1)求的通項公式;(2)若,求的前項和.22.(10分)已知函數(shù).(1)當時,不等式恒成立,求實數(shù)的取值范圍;(2)解關(guān)于的不等式:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由公切線條數(shù)得兩圓外切,由此可得的關(guān)系,從而點在以原點為圓心,4為半徑的圓上,記,由求得的最小值,平方后即得結(jié)論【詳解】圓標準方程為,,半徑為,圓標準方程為,,半徑為,兩圓有三條公切線,則兩圓外切,所以,即,點在以原點為圓心,4為半徑的圓上,記,,所以,所以的最小值為故選:B2、C【解析】求得兩圓的圓心坐標和半徑,結(jié)合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因為兩圓相外切,可得,解得故選:C.3、A【解析】利用可化簡得,由此可得.【詳解】由得:,,即.故選:A.4、C【解析】求出樣本中心點的坐標,代入回歸直線方程,求出的值,再將代入回歸方程即可得解.【詳解】由表格中的數(shù)據(jù)可得,,將樣本中心點的坐標代入回歸直線方程可得,解得,所以,回歸直線方程為,故當時,.故選:C.5、A【解析】根據(jù)充分、必要條件的概念理解,可得結(jié)果.【詳解】由,則或所以“”可推出“或”但“或”不能推出“”故命題是命題充分且不必要條件故選:A【點睛】本題主要考查充分、必要條件的概念理解,屬基礎(chǔ)題.6、A【解析】結(jié)合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設(shè)左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A7、A【解析】求得兩圓的圓心和半徑,再根據(jù)圓心距與半徑之和半徑之差的關(guān)系,即可判斷位置關(guān)系.【詳解】對圓,其圓心,半徑;對圓,其圓心,半徑;又,故兩圓外切.故選:A.8、A【解析】利用二面角S﹣AC﹣B的余弦值求得,由此判斷出,且兩兩垂直,由此將三棱錐補形成正方體,利用正方體的外接球半徑,求得外接球的表面積.【詳解】設(shè)是的中點,連接,由于,所以,所以是二面角的平面角,所以.在三角形中,,在三角形中,,在三角形中,由余弦定理得:,所以,由于,所以兩兩垂直.由此將三棱錐補形成正方體如下圖所示,正方體的邊長為2,則體對角線長為.設(shè)正方體外接球的半徑為,則,所以外接球的表面積為,故選:.9、C【解析】求得,由此求得雙曲線的漸近線方程.【詳解】離心率,則,所以漸近線方程.故選:C10、D【解析】設(shè)直線傾斜角為,則,即可求出.【詳解】設(shè)直線的傾斜角為,則,又因為,所以.故選:D.11、B【解析】利用充分條件和必要條件的定義判斷.【詳解】解:若,則或,即或,所以是的必要不充分條件故選:B12、A【解析】分析可知直線與曲線在上的圖象有兩個交點,令可得出,令,問題轉(zhuǎn)化為直線與曲線有兩個交點,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可得出實數(shù)的取值范圍.【詳解】當時,,,此時兩個函數(shù)的圖象無交點;當時,由得,可得,令,其中,則直線與曲線有兩個交點,,當時,,此時函數(shù)單調(diào)遞增,當時,,此時函數(shù)單調(diào)遞減,則,且當時,,作出直線與曲線如下圖所示:由圖可知,當時,即當時,指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個不同的交點.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】求得雙曲線的a,b,c,不妨設(shè)P為雙曲線右支上的點,|PF1|=m,|PF2|=n,利用雙曲線的定義、余弦定理列出方程組,求出mn即可.【詳解】雙曲線的a=2,b=1,c=,不妨設(shè)P為雙曲線右支上的點,|PF1|=m,|PF2|=n,則,①由余弦定理可得,②聯(lián)立①②可得故答案為:214、80【解析】利用二項式的通項公式進行求解即可.【詳解】二項式的通項公式為:,令,所以項的系數(shù)為,故答案為:8015、【解析】取的中點G,連接FG,BG,F(xiàn)B,由正方體的幾何特征,易證平面AEC//平面BFG,再根據(jù)是側(cè)面內(nèi)一點(含邊界),且平面,得到點P在線段BG上運動,然后在等腰中求解.【詳解】如圖所示:取的中點G,連接FG,BG,F(xiàn)B,在正方體中,易得又因為平面BFG,平面BFG,所以平面BFG,同理證得平面BFG,又因為,所以平面AEC//平面BFG,因為是側(cè)面內(nèi)一點(含邊界),且平面,所以點P線段BG上運動,如圖所示:在等腰中,作,且,所以,設(shè)點F到線段BG的距離為d,由等面積法得,解得,所以線段長度的取值范圍是,故答案為:16、【解析】當點和都在圓的內(nèi)部時,結(jié)合點與圓的位置關(guān)系得出實數(shù)m的取值范圍,再由圓心到直線的距離大于半徑得出實數(shù)m的取值范圍.【詳解】當點和都在圓的內(nèi)部時,,解得或直線的方程為,即圓心到直線的距離為,當圓心到直線的距離大于半徑時,,且.綜上,實數(shù)m的取值范圍為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,T(0,1)﹒【解析】(1)根據(jù)橢圓的定義,結(jié)合即可求P的軌跡方程;(2)假設(shè)存在T(0,t),設(shè)AB方程為,聯(lián)立直線方程和橢圓方程,代入=0即可求出定點T.【小問1詳解】由題可知,,則,由橢圓定義知P的軌跡是以F1、為焦點,且長軸長為的橢圓,∴,∴,∴P的軌跡方程為C:;【小問2詳解】假設(shè)存在T(0,t)滿足題意,易得AB的斜率一定存在,否則不會存在T滿足題意,設(shè)直線AB的方程為,聯(lián)立,化為,易知恒成立,∴(*)由題可知,將(*)代入可得:即∴,解,∴在y軸上存在定點T(0,1),使以AB為直徑的圓恒過這個點T.18、(1),;(2)答案見解析.【解析】(1)已知切線求方程參數(shù),第一步求導(dǎo),切點在曲線,切點在切線,切點處的導(dǎo)數(shù)值為切線斜率.(2)第一步定義域,第二步求導(dǎo),第三步令導(dǎo)數(shù)大于或小于0,求解析,即可得到答案.【小問1詳解】的定義域為,,因為在點處的切線為,所以,所以;所以把點代入得:.即a,b的值為:,.【小問2詳解】由(1)知:.①當時,在上恒成立,所以在單調(diào)遞減;②當時,令,解得:,列表得:x-0+單調(diào)遞減極小值單調(diào)遞增所以,時,的遞減區(qū)間為,單增區(qū)間為.綜上所述:當時,在單調(diào)遞減;當時,的遞減區(qū)間為,單增區(qū)間為.【點睛】導(dǎo)函數(shù)中得切線問題第一步求導(dǎo),第二步列切點在曲線,切點在切線,切點處的導(dǎo)數(shù)值為切線斜率這三個方程,可解切線相關(guān)問題.19、(1)an=2n(2)100【解析】(1)由等差數(shù)列的通項公式列出方程組求解即可;(2)由裂項相消求和法得出,再由不等式的性質(zhì)得出n的最小值.【小問1詳解】設(shè)等差數(shù)列{an}的公差為d,依題意有解得,所以an=2n.【小問2詳解】由(1)得,則,所以因為,即,解得n>99,所以n的最小值為100.20、(1)(2)【解析】小問1:由拋物線的定義可求得動點的軌跡方程;小問2:可知直線的方程為,設(shè)點、,將直線的方程與拋物線的方程聯(lián)立,求出的值,利用拋物線的定義可求得的值,結(jié)合面積公式即可求解小問1詳解】由題意點的軌跡是以為焦點,直線為準線的拋物線,所以,則,所以動點的軌跡方程是.【小問2詳解】由已知直線的方程是,設(shè)、,由得,,所以,則,故,21、(1)(2)【解析】(1)由與的關(guān)系結(jié)合等比數(shù)列的定義得出的通項公式;(2)由(1)得出,再由錯位相減法得出的前項和.【小問1詳解】因為,所以當時,,所以.當時,,兩式相減,得,所以,所以,所以是以1為首項,2為公比的等比數(shù)列,所以.【小問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年歷史文化傳承人認證題庫
- 2026年環(huán)境科學與工程研究生入學考試環(huán)境監(jiān)測與治理技術(shù)要點
- 2026年職業(yè)技能提升培訓(xùn)筆試指南
- 2026年新聞編輯新聞報道與新媒體傳播技巧測試題
- 2026年長沙環(huán)境保護職業(yè)技術(shù)學院單招綜合素質(zhì)筆試參考題庫含詳細答案解析
- 2026年承德應(yīng)用技術(shù)職業(yè)學院單招綜合素質(zhì)考試備考題庫含詳細答案解析
- 北京市大興區(qū)城市管理指揮中心招聘勞務(wù)派遣1人參考考試試題及答案解析
- 2026福建福州市志愿者聯(lián)合會專職工作人員(勞務(wù)派遣)招聘3人考試參考試題及答案解析
- 2026年南充職業(yè)技術(shù)學院高職單招職業(yè)適應(yīng)性測試備考題庫及答案詳細解析
- 2026年蘭州石化職業(yè)技術(shù)學院單招綜合素質(zhì)筆試備考試題含詳細答案解析
- 收藏 各行業(yè)標準及其歸口的行業(yè)部門
- MDT指導(dǎo)下IBD生物制劑的個體化給藥方案
- 導(dǎo)游畢業(yè)設(shè)計路線方案
- 外賬會計外賬協(xié)議書
- 2024年中水北方勘測設(shè)計研究有限責任公司招聘考試真題
- T-ZZB 3570-2023 工業(yè)用丙烯酰胺
- 現(xiàn)代服務(wù)業(yè)勞動課件
- 2023年中考-四川成都地理真題+答案
- 口腔種植進修匯報
- 頭痛病的中醫(yī)護理常規(guī)
- 云南罰沒財物管理辦法
評論
0/150
提交評論