版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
七年級(jí)數(shù)學(xué)暑假培優(yōu)講義開篇語(yǔ):數(shù)學(xué)的魅力與暑假的約定親愛的同學(xué)們,恭喜你們順利完成了初中第一年的數(shù)學(xué)學(xué)習(xí)。這個(gè)暑假,既是放松休整的好時(shí)機(jī),也是我們查漏補(bǔ)缺、實(shí)現(xiàn)“彎道超車”的黃金時(shí)期。數(shù)學(xué),這門充滿邏輯與智慧的學(xué)科,不僅僅是課本上的公式與定理,更是解決實(shí)際問(wèn)題的有力工具,是鍛煉思維能力的體操。這份暑假培優(yōu)講義,旨在幫助大家溫故知新,拓展數(shù)學(xué)視野,提升解題能力。我們將一起回顧七年級(jí)學(xué)習(xí)的重點(diǎn)難點(diǎn),并對(duì)部分內(nèi)容進(jìn)行深化與拓展,為即將到來(lái)的八年級(jí)數(shù)學(xué)學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ)。希望大家能沉下心來(lái),與我一同探索數(shù)學(xué)的奧秘,享受思考帶來(lái)的樂(lè)趣。記住,數(shù)學(xué)的世界里,沒(méi)有捷徑,但有方法;沒(méi)有天生的學(xué)霸,只有持續(xù)的努力和正確的方向。第一講:數(shù)與式的深化——從基礎(chǔ)到技巧1.1有理數(shù)的“再認(rèn)識(shí)”與運(yùn)算技巧我們已經(jīng)學(xué)習(xí)了有理數(shù)的概念及其四則運(yùn)算。暑假里,我們首先要做的就是將這些基礎(chǔ)知識(shí)點(diǎn)梳理清晰,確保沒(méi)有遺漏。核心回顧:*有理數(shù)的分類(整數(shù)、分?jǐn)?shù);正有理數(shù)、零、負(fù)有理數(shù))。*數(shù)軸、相反數(shù)、絕對(duì)值的幾何意義與代數(shù)意義。特別提醒,絕對(duì)值的非負(fù)性`|a|≥0`是很多問(wèn)題的切入點(diǎn)。*有理數(shù)的加減乘除法則,以及運(yùn)算律(交換律、結(jié)合律、分配律)的靈活運(yùn)用。典例精析:例1:已知`|a|=3`,`|b|=5`,且`a<b`,求`a+b`的值。分析:絕對(duì)值的定義告訴我們,`a`可能是`3`或`-3`,`b`可能是`5`或`-5`。但題目中還有`a<b`這個(gè)條件,我們需要據(jù)此進(jìn)行分類討論,排除不符合條件的情況。解答:因?yàn)閌|a|=3`,所以`a=3`或`a=-3`。因?yàn)閌|b|=5`,所以`b=5`或`b=-5`。又因?yàn)閌a<b`,所以:當(dāng)`a=3`時(shí),`b=5`(因?yàn)閌3<5`,而`3<-5`不成立),此時(shí)`a+b=3+5=8`。當(dāng)`a=-3`時(shí),`b=5`(因?yàn)閌-3<5`,而`-3<-5`不成立),此時(shí)`a+b=-3+5=2`。綜上,`a+b`的值為`8`或`2`。點(diǎn)評(píng):本題主要考查絕對(duì)值的性質(zhì)及有理數(shù)的加法,分類討論思想是解決這類問(wèn)題的關(guān)鍵。例2:計(jì)算`1-2+3-4+5-6+...+99-100`分析:觀察這個(gè)算式,我們發(fā)現(xiàn)相鄰兩項(xiàng)的和有規(guī)律可循,比如`1-2=-1`,`3-4=-1`,以此類推。解答:原式`=(1-2)+(3-4)+(5-6)+...+(99-100)`一共有`100`個(gè)數(shù),每?jī)蓚€(gè)數(shù)一組,共有`50`組。每組的結(jié)果都是`-1`,所以原式`=(-1)×50=-50`。點(diǎn)評(píng):對(duì)于有規(guī)律的加減混合運(yùn)算,合理分組可以簡(jiǎn)化計(jì)算,體現(xiàn)了“轉(zhuǎn)化”的數(shù)學(xué)思想。思維訓(xùn)練:1.已知`|x-2|+|y+3|=0`,求`x+y`的值。2.計(jì)算`1+2-3-4+5+6-7-8+...+97+98-99-100`1.2整式的化簡(jiǎn)求值與整體思想整式的加減是代數(shù)運(yùn)算的基礎(chǔ),化簡(jiǎn)求值是常見題型,其中“整體代入”的思想尤為重要。核心回顧:*整式的概念(單項(xiàng)式、多項(xiàng)式),同類項(xiàng)的定義與合并法則。*去括號(hào)法則:括號(hào)前是“+”,去括號(hào)后各項(xiàng)不變號(hào);括號(hào)前是“-”,去括號(hào)后各項(xiàng)都變號(hào)。*整式加減的實(shí)質(zhì)就是合并同類項(xiàng)。典例精析:例3:化簡(jiǎn)求值:`3x2y-[2xy2-2(xy-1.5x2y)+xy]+3xy2`,其中`x=3`,`y=-1/3`。分析:化簡(jiǎn)這類多層括號(hào)的整式,一般從里向外逐層去括號(hào),然后合并同類項(xiàng)。最后將字母的值代入化簡(jiǎn)后的式子計(jì)算。解答:原式`=3x2y-[2xy2-2xy+3x2y+xy]+3xy2`(先去小括號(hào))`=3x2y-[2xy2-xy+3x2y]+3xy2`(合并小括號(hào)內(nèi)的同類項(xiàng))`=3x2y-2xy2+xy-3x2y+3xy2`(去中括號(hào))`=(3x2y-3x2y)+(-2xy2+3xy2)+xy`(合并同類項(xiàng))`=0+xy2+xy``=xy2+xy`當(dāng)`x=3`,`y=-1/3`時(shí),原式`=3×(-1/3)2+3×(-1/3)``=3×(1/9)+(-1)``=1/3-1``=-2/3`點(diǎn)評(píng):去括號(hào)時(shí)要特別注意符號(hào)變化,合并同類項(xiàng)要仔細(xì)。先化簡(jiǎn)再求值,能大大減少計(jì)算量。例4:已知`a+b=5`,`ab=3`,求代數(shù)式`2(a+b)-3ab`的值。分析:本題中沒(méi)有直接給出`a`和`b`的值,而是給出了`a+b`和`ab`的值。我們可以將`a+b`和`ab`看作整體,直接代入代數(shù)式。解答:因?yàn)閌a+b=5`,`ab=3`,所以`2(a+b)-3ab=2×5-3×3=10-9=1`。點(diǎn)評(píng):“整體思想”是代數(shù)式求值中一種非常重要的技巧,能化繁為簡(jiǎn)。思維訓(xùn)練:3.若`2x2+3x+7=8`,則代數(shù)式`4x2+6x-9`的值是多少?4.化簡(jiǎn):`(4a2-2a-6)-2(2a2-2a-5)`,并思考:當(dāng)`a`取何值時(shí),該代數(shù)式的值與`a`無(wú)關(guān)?1.3分式的初步認(rèn)識(shí)(預(yù)習(xí)與拓展)在七年級(jí),我們主要學(xué)習(xí)了整式。分式是不同于整式的另一類代數(shù)式,它是八年級(jí)學(xué)習(xí)的重點(diǎn)。暑假里,我們可以對(duì)分式有一個(gè)初步的認(rèn)識(shí),為新學(xué)期的學(xué)習(xí)做好鋪墊。核心預(yù)覽:*分式的概念:形如`A/B`(`A`、`B`是整式,`B`中含有字母且`B≠0`)的式子叫做分式。*分式有意義的條件:分母不為零。*分式的值為零的條件:分子為零且分母不為零。典例精析:例5:當(dāng)`x`取何值時(shí),分式`(x-1)/(x+2)`有意義?當(dāng)`x`取何值時(shí),該分式的值為零?分析:根據(jù)分式有意義和值為零的條件直接求解。解答:要使分式`(x-1)/(x+2)`有意義,則分母`x+2≠0`,即`x≠-2`。要使分式`(x-1)/(x+2)`的值為零,則分子`x-1=0`且分母`x+2≠0`。由`x-1=0`得`x=1`。當(dāng)`x=1`時(shí),分母`x+2=1+2=3≠0`,所以`x=1`時(shí),分式的值為零。點(diǎn)評(píng):分式的值為零包含兩個(gè)條件,缺一不可。思維訓(xùn)練:5.當(dāng)`x`為何值時(shí),分式`(x2-4)/(x-2)`有意義?值為零?---第二講:方程與不等式的應(yīng)用——建模與求解方程與不等式是解決實(shí)際問(wèn)題的重要數(shù)學(xué)工具。通過(guò)設(shè)未知數(shù),根據(jù)等量關(guān)系或不等關(guān)系列出方程或不等式,進(jìn)而解決問(wèn)題,這就是“數(shù)學(xué)建模”的初步思想。2.1一元一次方程的深化應(yīng)用一元一次方程是代數(shù)方程的基礎(chǔ),其應(yīng)用廣泛,我們要熟練掌握各類典型問(wèn)題的等量關(guān)系。核心回顧:*一元一次方程的定義:只含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1,且等式兩邊都是整式的方程。*解一元一次方程的一般步驟:去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1。*列方程解應(yīng)用題的一般步驟:審、設(shè)、列、解、驗(yàn)、答。典例精析:例6:行程問(wèn)題:甲、乙兩地相距`450`千米,一列慢車從甲地開出,每小時(shí)行駛`65`千米;一列快車從乙地開出,每小時(shí)行駛`85`千米。兩車同時(shí)開出,相向而行,多少小時(shí)后兩車相遇?分析:相遇問(wèn)題的基本等量關(guān)系是:慢車行駛的路程+快車行駛的路程=總路程。解答:設(shè)`x`小時(shí)后兩車相遇。根據(jù)題意,得`65x+85x=450`合并同類項(xiàng),得`150x=450`系數(shù)化為1,得`x=3`答:3小時(shí)后兩車相遇。點(diǎn)評(píng):行程問(wèn)題要注意區(qū)分相遇、追及等不同類型,關(guān)鍵是找到路程之間的關(guān)系。例7:工程問(wèn)題:一項(xiàng)工程,甲單獨(dú)做需要`10`天完成,乙單獨(dú)做需要`15`天完成。兩人合作,幾天可以完成這項(xiàng)工程的一半?分析:工程問(wèn)題通常把工作總量看作單位“1”。甲的工作效率是`1/10`,乙的工作效率是`1/15`。等量關(guān)系是:甲的工作量+乙的工作量=工作總量的一半。解答:設(shè)兩人合作`x`天可以完成這項(xiàng)工程的一半。根據(jù)題意,得`(1/10)x+(1/15)x=1/2`通分,得`(3/30)x+(2/30)x=15/30`合并同類項(xiàng),得`(5/30)x=15/30`化簡(jiǎn),得`(1/6)x=1/2`系數(shù)化為1,得`x=3`答:兩人合作3天可以完成這項(xiàng)工程的一半。點(diǎn)評(píng):理解工作效率的概念是解決工程問(wèn)題的關(guān)鍵。思維訓(xùn)練:6.某商店將某種服裝按進(jìn)價(jià)提高40%后標(biāo)價(jià),又以8折優(yōu)惠賣出,結(jié)果每件仍獲利15元,這種服裝每件的進(jìn)價(jià)是多少元?7.一隊(duì)學(xué)生去校外進(jìn)行軍事野營(yíng)訓(xùn)練,他們以5千米/時(shí)的速度行進(jìn),走了18分鐘的時(shí)候,學(xué)校要將一個(gè)緊急通知傳給隊(duì)長(zhǎng)。通訊員從學(xué)校出發(fā),騎自行車以14千米/時(shí)的速度按原路追上去,通訊員需要多少時(shí)間可以追上學(xué)生隊(duì)伍?2.2一元一次不等式(組)的初步應(yīng)用(預(yù)習(xí))不等式是表示不等關(guān)系的數(shù)學(xué)模型。與方程類似,但解是一個(gè)范圍。核心預(yù)覽:*不等式的基本性質(zhì)(與等式性質(zhì)對(duì)比學(xué)習(xí),特別注意不等式兩邊乘除負(fù)數(shù)時(shí),不等號(hào)方向要改變)。*一元一次不等式的解法(步驟類似一元一次方程,但要注意變號(hào)問(wèn)題)。*一元一次不等式組的解法:分別求出每個(gè)不等式的解集,再找它們的公共部分(借助數(shù)軸直觀)。典例精析:例8:解不等式`(2x-1)/3-(5x+1)/2≤1`,并把解集在數(shù)軸上表示出來(lái)。分析:按照去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1的步驟求解,注意去分母時(shí)每一項(xiàng)都要乘最小公倍數(shù),以及系數(shù)化為1時(shí),若系數(shù)為負(fù),不等號(hào)方向要改變。解答:去分母(兩邊同乘6),得`2(2x-1)-3(5x+1)≤6`去括號(hào),得`4x-2-15x-3≤6`移項(xiàng),得`4x-15x≤6+2+3`合并同類項(xiàng),得`-11x≤11`系數(shù)化為1(兩邊同除以-11),得`x≥-1`(注意不等號(hào)方向改變)數(shù)軸表示:(此處可文字描述:在數(shù)軸上找到表示-1的點(diǎn),畫實(shí)心圓點(diǎn),然后向右畫線)點(diǎn)評(píng):解不等式的每一步都要依據(jù)不等式的性質(zhì),特別是變號(hào)規(guī)則。例9:當(dāng)`k`為何值時(shí),關(guān)于`x`的方程`3x-2k=5(x-k)+6`的解是負(fù)數(shù)?分析:先把`k`看作常數(shù),解關(guān)于`x`的方程,用含`k`的代數(shù)式表示`x`,然后根據(jù)`x`是負(fù)數(shù)列出關(guān)于`k`的不等式,解這個(gè)不等式即可求出`k`的范圍。解答:解方程`3x-2k=5(x-k)+6`去括號(hào),得`3x-2k=5x-5k+6`移項(xiàng),得`3x-5x=-5k+6+2k`合并同類項(xiàng),得`-2x=-3k+6`系數(shù)化為1,得`x=(3k-6)/2`因?yàn)榉匠痰慕馐秦?fù)數(shù),所以`(3k-6)/2<0`兩邊同乘2,得`3k-6<0`移項(xiàng),得`3k<6`系數(shù)化為1,得`k<2`所以,當(dāng)`k<2`時(shí),方程的解是負(fù)數(shù)。點(diǎn)評(píng):本題將方程的解與不等式結(jié)合起來(lái),體現(xiàn)了知識(shí)間的聯(lián)系。先解方程,再列不等式,是解決這類問(wèn)題的常規(guī)思路。思維訓(xùn)練:8.解不等式組`{x-3(x-2)≥4,(1+2x)/3>x-1}`,并寫出它的整數(shù)解。9.某班組織20名同學(xué)去春游,同時(shí)租用兩種型號(hào)的車輛,一種車每輛有8個(gè)座位,另一種車每輛有4個(gè)座位。要求租用的車輛不留空座,也不能超載。有幾種租車方案?---第三講:圖形世界的初步探索——空間觀念與推理幾何是數(shù)學(xué)的重要組成部分,培養(yǎng)空間觀念和初步的邏輯推理能力是七年級(jí)幾何學(xué)習(xí)的主要目標(biāo)。3.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年山東勝利職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考題庫(kù)含詳細(xì)答案解析
- 2026年廣東水利電力職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試模擬試題含詳細(xì)答案解析
- 2026福建水投集團(tuán)新羅水務(wù)有限公司招聘4人考試重點(diǎn)題庫(kù)及答案解析
- 2026年鄭州工業(yè)應(yīng)用技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試模擬試題含詳細(xì)答案解析
- 2026年廣東南華工商職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考試題含詳細(xì)答案解析
- 2026年湘西民族職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考題庫(kù)含詳細(xì)答案解析
- 2026年成都工貿(mào)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試備考題庫(kù)含詳細(xì)答案解析
- 2026年河南輕工職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考試題含詳細(xì)答案解析
- 2026年南通職業(yè)大學(xué)單招綜合素質(zhì)考試備考題庫(kù)含詳細(xì)答案解析
- 2026年閩江學(xué)院?jiǎn)握新殬I(yè)技能考試模擬試題含詳細(xì)答案解析
- 血液透析PDCA課件
- 電池回收廠房建設(shè)方案(3篇)
- 保函管理辦法公司
- 幼兒游戲評(píng)價(jià)的可視化研究
- 果樹賠賞協(xié)議書
- 基底節(jié)出血的護(hù)理查房
- 2025年廣東省中考物理試題卷(含答案)
- 金華東陽(yáng)市國(guó)有企業(yè)招聘A類工作人員筆試真題2024
- 2025年6月29日貴州省政府辦公廳遴選筆試真題及答案解析
- 2025年湖南省中考數(shù)學(xué)真題試卷及答案解析
- DB32/T 3518-2019西蘭花速凍技術(shù)規(guī)程
評(píng)論
0/150
提交評(píng)論