版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省宿州市泗縣第一中學(xué)2026年高三模擬考試(二)數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)滿足,其中是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為()A. B. C. D.2.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.3.已知函數(shù),則()A.2 B.3 C.4 D.54.復(fù)數(shù)的模為().A. B.1 C.2 D.5.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.6.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.7.已知數(shù)列的前n項(xiàng)和為,,且對(duì)于任意,滿足,則()A. B. C. D.8.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.9.已知隨機(jī)變量的分布列是則()A. B. C. D.10.函數(shù)的定義域?yàn)?,集合,則()A. B. C. D.11.已知直線與圓有公共點(diǎn),則的最大值為()A.4 B. C. D.12.某人造地球衛(wèi)星的運(yùn)行軌道是以地心為一個(gè)焦點(diǎn)的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點(diǎn)離地面的距離為,則該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則=__________.14.在中,內(nèi)角的對(duì)邊分別是,若,,則____.15.(5分)已知函數(shù),則不等式的解集為____________.16.已知實(shí)數(shù)、滿足,且可行域表示的區(qū)域?yàn)槿切?,則實(shí)數(shù)的取值范圍為______,若目標(biāo)函數(shù)的最小值為-1,則實(shí)數(shù)等于______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱臺(tái)中,側(cè)面與側(cè)面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.18.(12分)已知函數(shù)的定義域?yàn)?,且滿足,當(dāng)時(shí),有,且.(1)求不等式的解集;(2)對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.19.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn).(1)求證:平面;(2)求二面角的正切值.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的定義域?yàn)?求實(shí)數(shù)的取值范圍.21.(12分)已知拋物線Γ:y2=2px(p>0)的焦點(diǎn)為F,P是拋物線Γ上一點(diǎn),且在第一象限,滿足(2,2)(1)求拋物線Γ的方程;(2)已知經(jīng)過點(diǎn)A(3,﹣2)的直線交拋物線Γ于M,N兩點(diǎn),經(jīng)過定點(diǎn)B(3,﹣6)和M的直線與拋物線Γ交于另一點(diǎn)L,問直線NL是否恒過定點(diǎn),如果過定點(diǎn),求出該定點(diǎn),否則說明理由.22.(10分)的內(nèi)角,,的對(duì)邊分別為,,已知,.(1)求;(2)若的面積,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
利用復(fù)數(shù)的除法運(yùn)算化簡z,復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為利用模長公式即得解.【詳解】由題意知復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為故選:B本題考查了復(fù)數(shù)的除法運(yùn)算,模長公式和幾何意義,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.2.B【解析】
每個(gè)式子的值依次構(gòu)成一個(gè)數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計(jì)算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個(gè)數(shù)列,可得數(shù)列滿足,則,,.故選:B.本題主要考查歸納推理,解題關(guān)鍵是通過數(shù)列的項(xiàng)歸納出遞推關(guān)系,從而可確定數(shù)列的一些項(xiàng).3.A【解析】
根據(jù)分段函數(shù)直接計(jì)算得到答案.【詳解】因?yàn)樗?故選:.本題考查了分段函數(shù)計(jì)算,意在考查學(xué)生的計(jì)算能力.4.D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由復(fù)數(shù)模的計(jì)算公式求解.【詳解】解:,復(fù)數(shù)的模為.故選:D.本題主要考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.5.C【解析】
利用對(duì)數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計(jì)算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.本題考查對(duì)數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時(shí)選擇合適的中間值比較是關(guān)鍵,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.6.C【解析】
由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.7.D【解析】
利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項(xiàng)公式,然后求解數(shù)列的和,判斷選項(xiàng)的正誤即可.【詳解】當(dāng)時(shí),.所以數(shù)列從第2項(xiàng)起為等差數(shù)列,,所以,,.,,.故選:.本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項(xiàng)公式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.8.D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識(shí)點(diǎn)有復(fù)數(shù)的乘除運(yùn)算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.9.C【解析】
利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.本題考查離散型隨機(jī)變量的分布列以及期望的求法,是基本知識(shí)的考查.10.A【解析】
根據(jù)函數(shù)定義域得集合,解對(duì)數(shù)不等式得到集合,然后直接利用交集運(yùn)算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.本題考查了交集及其運(yùn)算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.11.C【解析】
根據(jù)表示圓和直線與圓有公共點(diǎn),得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)楸硎緢A,所以,解得,因?yàn)橹本€與圓有公共點(diǎn),所以圓心到直線的距離,即,解得,此時(shí),因?yàn)?,在遞增,所以的最大值.故選:C本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.12.A【解析】
由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設(shè)衛(wèi)星近地點(diǎn),遠(yuǎn)地點(diǎn)離地面距離分別為r,n,如圖:則所以,,故選:A本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)等差中項(xiàng)性質(zhì),結(jié)合等比數(shù)列通項(xiàng)公式即可求得公比;代入表達(dá)式,結(jié)合對(duì)數(shù)式的化簡即可求解.【詳解】等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項(xiàng)公式可知,所以,解得或(舍),所以由對(duì)數(shù)式運(yùn)算性質(zhì)可得,故答案為:.本題考查了等差數(shù)列通項(xiàng)公式的簡單應(yīng)用,等比數(shù)列通項(xiàng)公式的用法,對(duì)數(shù)式的化簡運(yùn)算,屬于中檔題.14.【解析】
由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結(jié)合已知聯(lián)立方程組,即可求得角.【詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.本題主要考查了求三角形的一個(gè)內(nèi)角,解題關(guān)鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計(jì)算能力,屬于中檔題.15.【解析】
易知函數(shù)的定義域?yàn)?,且,則是上的偶函數(shù).由于在上單調(diào)遞增,而在上也單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性知在上單調(diào)遞增,又在上單調(diào)遞增,故知在上單調(diào)遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調(diào)遞增,可得,則,解得,故不等式的解集為.16.【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點(diǎn)時(shí),此時(shí),直線:,與:的交點(diǎn)為,該點(diǎn)也在直線:上,故,故答案為:;.本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進(jìn)而得線面平行;(Ⅱ)過點(diǎn)作的垂線,建立空間直角坐標(biāo)系,不妨設(shè),則求得平面的法向量為,設(shè)平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側(cè)面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內(nèi),過點(diǎn)作的垂線,如圖建立空間直角坐標(biāo)系,不妨設(shè),則,故點(diǎn),;設(shè)平面的法向量為,則有:;設(shè)平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.18.(1);(2).【解析】
(1)利用定義法求出函數(shù)在上單調(diào)遞增,由和,求出,求出,運(yùn)用單調(diào)性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調(diào)遞增,恒成立,設(shè),利用三角恒等變換化簡,結(jié)合恒成立的條件,構(gòu)造新函數(shù),利用單調(diào)性和最值,求出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè),,所以函數(shù)在上單調(diào)遞增,又因?yàn)楹?,則,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設(shè),則,令,則,所以在區(qū)間上單調(diào)遞增,所以,根據(jù)條件,只要,所以.本題考查利用定義法求函數(shù)的單調(diào)性和利用單調(diào)性求不等式的解集,考查不等式恒成立問題,還運(yùn)用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉(zhuǎn)化思想和解題能力.19.(1)見證明;(2)【解析】
(1)取PD中點(diǎn)G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點(diǎn)O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點(diǎn)G,連結(jié)為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點(diǎn)O,連結(jié)PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計(jì)算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計(jì)算.20.(1)(2)【解析】
(1)分類討論,去掉絕對(duì)值,化為與之等價(jià)的三個(gè)不等式組,求得每個(gè)不等式組的解集,再取并集即可.(2)要使函數(shù)的定義域?yàn)镽,只要的最小值大于0即可,根據(jù)絕對(duì)值不等式的性質(zhì)求得最小值即可得到答案.【詳解】(1)不等式或或,解得或,即x>0,所以原不等式的解集為.(2)要使函數(shù)的定義域?yàn)镽,只要的最小值大于0即可,又,當(dāng)且僅當(dāng)時(shí)取等,只需最小值,即.所以實(shí)數(shù)a的取值范圍是.本題考查絕對(duì)值不等式的解法,考查利用絕對(duì)值三角不等式求最值,屬基礎(chǔ)題.21.(1)y2=4x;;(2)直線NL恒過定點(diǎn)(﹣3,0),理由見解析.【解析】
(1)根據(jù)拋物線的方程,求得焦點(diǎn)F(,0),利用(2,2),表示點(diǎn)P的坐標(biāo),再代入拋物線方程求解.(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因?yàn)锳(3,﹣2),B(3,﹣6)在這兩條直線上,分別代入兩直線的方程可得y1y2=12,然后表示直線NL的方程為:y﹣y1(x),代入化簡求解.【詳解】(1)由拋物線的方程可得焦點(diǎn)F(,0),滿足(2,2)的P的坐標(biāo)為(2,2),P在拋物線上,所以(2)2=2p(2),即p2+4p﹣12=0,p>0,解得p=2,所以拋物線的方程為:y2=4x;(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),則y12=4x1,y22=4x2,直線MN的斜率kMN,則直線MN的方程為:y﹣y0(x),即y①,同理可得直線ML的方程整理可得y②,將A(3,﹣2),B(3,﹣6)分別代入①,②的方程可得,消y0可得y1y2=12,易知直線kNL,則直線NL的方程為:y﹣y1(x),即yx,故yx,所以y(x+3),因此直線NL恒過定點(diǎn)(﹣3,0).本題主要考查了拋物線的方程及直線與拋物線的位置關(guān)系,直線過定點(diǎn)問題,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 衛(wèi)生院院感考核制度
- 幼兒園紀(jì)律考核制度
- 設(shè)計(jì)院公司考核制度
- 衛(wèi)計(jì)局干部考核制度
- 房務(wù)部員工考核制度
- 武漢大學(xué)新考核制度
- 供電營業(yè)廳考核制度
- 農(nóng)民夜校學(xué)生考核制度
- 城管安全生產(chǎn)考核制度
- 組織部績效考核制度
- 2026 年離婚協(xié)議書 2026 版民政局專用模板
- 2026及未來5年中國電力工程總承包行業(yè)市場(chǎng)競爭態(tài)勢(shì)及未來趨勢(shì)研判報(bào)告
- 預(yù)備役介紹課件
- 2026年及未來5年市場(chǎng)數(shù)據(jù)中國丙烯酸酯單體行業(yè)市場(chǎng)運(yùn)行態(tài)勢(shì)與投資戰(zhàn)略咨詢報(bào)告
- 2026元旦主題班會(huì):馬年猜猜樂新春祝福版 教學(xué)課件
- 四川省2025年高職單招職業(yè)技能綜合測(cè)試(中職類)紡織服裝類試卷(含答案解析)
- 2025年及未來5年市場(chǎng)數(shù)據(jù)中國磷化銦行業(yè)市場(chǎng)調(diào)研分析及投資戰(zhàn)略咨詢報(bào)告
- 《老年人誤吸的預(yù)防專家共識(shí)》解讀2
- 2025亞洲智能手機(jī)顯現(xiàn)模塊制造行業(yè)產(chǎn)能地理分布及供應(yīng)鏈調(diào)整規(guī)劃
- 項(xiàng)目二各類食物的營養(yǎng)價(jià)值9認(rèn)識(shí)“五菜為充”(教案)-《食品營養(yǎng)與衛(wèi)生》(高教第二版)同步課堂
- 非營利組織內(nèi)部管理制度
評(píng)論
0/150
提交評(píng)論