全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
BroilerGrowthPerformanceAnalysis:fromCorrelationAnalysis,MultipleLinearRegression,toNeuralNetworkMeiyanXiao,PeijieHuang*,PiyuanLin,ShangweiYanCollegeofInformaticsSouthChinaAgriculturalUniversityGuangzhou,China*CorrespondingAuthor:AbstractThepurposeofthisstudyistoinvestigatethedataWeusethebroilergrowthdatasetofthemostfamousfittingforbroilergrowthperformanceparameters.Inthispaper,poultryraisingcompanyinChinatoevaluateourapproachandthegradualadvancinganalysismethods,fromcorrelationtheresultsshowtheeffectivenessofourapproach.analysis,multiplelinearregression,toneuralnetwork,areproposed.Themeantechnologyroadmapis:firstly,correlationTherestofthispaperisorganizedasfollows.Inthenextanalysisisusedtodetectthedegreeofcorrelationbetweenthesection,wepresentthegradualadvancinganalysismethods.broilergrowthperformanceparameterandthecandidateinputExperimentsarepresentedanddiscussedinSection3.Finally,variables.AndthenchoosethepredictorvariablesthathavegoodSection4listssomeconclusions.correlationwiththedependentvariabletobuildthemultiplelinearregressionorneuralnetworkpredictionmodel,orboth,II.GRADUALADVANCINGANALYSISMETHODSaccordingtothelineardegreeofcorrelations.CombinedpredictionmaybechoseoncebothmodelshavegoodpredictionTheexploremethodsinourstudyofdatafittingforbroilerperformances.Weusethebroilergrowthdatasetofthemostgrowthperformanceparametersisdevelopedstepbystep,fromfamouspoultryraisingcompanyinChinatoevaluateourcorrelationanalysistoMLR,andthentononlinearfittingapproachandtheresultsshowtheeffectivenessofourapproach.meansbyneuralnetwork.Keywords-growthperformance;correlationanalysis;multipleA.TechnologyRoadmaplinearregression;neuralnetwork;broilerbreedingThetechnologyroadmapofourgradualadvancinganalysismethodsisshowninFig.1.I.INTRODUCTIONBioinformatics1isapromisingyoungfieldthatappliescomputertechnologyinbiologyanddevelopsalgorithmsandmethodstomanageandanalyzebiologicaldata2.Forthemodernpoultrybreedingcompanies,itisdeservedtopredictthepoultrygrowthperformanceparameters,suchasrateforsale,feedintake,dailygainandfeedconversionratio,basedonthemassivehistoricaldatagraduallycumulatedinproduction.However,becauseofthecomplexityanduncertaintybringbytheinfluenceofenvironmentalandphysiologicalfactors,informationintegrationofbiologicaldataisachallenge.Inthispaper,thegradualadvancinganalysismethods,fromcorrelationanalysis,multiplelinearregression(MLR)3,toneuralnetwork4,areproposedtostudythedatafittingforbroilergrowthperformanceparameters.Inbroilerbreeding,seasonalfactorplaysanimportantpart.Ontheeffectofseasonalfactors,broilergrowthperformanceFigure1.Technologyroadmapoftheproposedmethodscanbeobviouslydifferent.SobroilergrowthperformanceTheassociationbetweenvariablescanbelinearorparametershaveobviousseasonalvariation.Seasonalfactorsnonlinear.Correlationanalysisismostlyusedtoevaluatelinearincludeairtemperature,precipitation,windspeed,pressure,relationships.Associationsbetweentwovariablescanberelativehumidity,etc.Thispapertakestheinfluenceoftheairanalyzedwithabivariatecorrelationanalysis.Whiletemperaturetotherateforsaleforexampletointroducetheassociationsbetweenone(dependent)variableandasetoftwobroilergrowthperformanceanalysismethods.ormore(independent)variables,whichhavestrongThisworkissupportedbytheSci&TechResearchProjectofGuangdongProvinceunderGrantNo.2007A020300010,theNational863High-TechResearch&DevelopmentPlanofChinaunderGrantNo.2006AA10Z246,andtheNewDisciplineSupportingFundofSouthChinaAgriculturalUniversityunderGrantNo.2007X022.NotlinearenoughDependentvariableIndependentvariablesCorrelationAnalysisComparisonCombinedpredictionwhenbothhavegoodpredictresponsesMultipleLinearRegressionNeuralNetworkStronglinercorrelation978-1-4244-4713-8/10/$25.002010IEEEcorrelationswiththedependentvariable,canbestudiedusingmultiplecorrelation(regression)analysis,suchasMLR.Alternatively,ifthedegreeofcorrelationsisnotlinearenoughbetweenthedependentvariableandtheindependentvariables,somenonlinearfittingsprovidegoodchoose.Inthenonlinearfittingmethods,comparingtoGompertzthatusingleastsquaresinnonlinearregression,neuralnetworkisprovedtohasgoodabilitytopredictresponses5.Finally,inpracticalapplication,ifbothMLRandneuralnetworkhavegoodpredictionperformances,wecanconsiderthecombinedprediction.B.CorrelationAnalysisAcorrelationanalysisisastatisticalprocedurethatevaluatestheassociationbetweenthedependentvariableandtheindependentvariablesrespectively.Thesimplestwaytofindoutqualitativelythecorrelationistoplotthedata.AndwecanquantifythedegreeofcorrelationbyspecifyingthecorrelationcoefficientR,definedasyyinixxiyxnR=111(1)wherexandxdenotethesamplemeanandthesamplestandarddeviationrespectivelyforthevariablexandyandydenotethesamplemeanandthesamplestandarddeviationrespectivelyforthevariabley.Assumethataperfectlinearrelationshipexistsbetweenthevariablesxandy,i.e.,baxyii+=fori=1,2,.,nwith0a.Nowverifyusingthedefinitionsofthemeanandthevariancethatbaxy+=andxya=.Thisimpliesfrom(1)thatR=a/|a|.Orinotherwords,R=1ifa0andR=-1ifa0.ThecaseR=1correspondstothemaximumpossiblelinearpositiveassociationbetweenxandy,meaningthatallthedatapointswilllieexactlyonastraightlineofpositiveslope.Similarly,R=-1correspondstothemaximumpossiblenegativeassociationbetweenthestatisticalvariablesxandy.Ingeneral,-1R1withthemagnitudeandthesignofRrepresentingthestrengthanddirectionrespectivelyoftheassociationbetweenthetwovariables.C.MultipleLinearRegressionOncewehaveestablishedthatastrongcorrelationexistsbetweenthedependentvariableandmorethanoneindependentvariable,wewilluseMLR.AlinearregressionmodelthatcontainsmorethanonepredictorvariableiscalledaMLRmodel.ThefollowingmodelisaMLRmodelwithtwopredictorvariables,1xand2xuxxy+=2210(2)Themodelislinearbecauseitislinearintheparameters,0,1and2.Themodeldescribesaplaneinthethreedimensionalspaceofy,1xand2x.Theparameter0istheinterceptofthisplane.Parameters1and2arereferredtoaspartialregressioncoefficients.Parameter1representsthechangeinthemeanresponsecorrespondingtoaunitchangein1xwhen2xisheldconstant.Parameter2representsthechangeinthemeanresponsecorrespondingtoaunitchangein2xwhen1xisheldconstant.uistherandomerror.D.NeuralNetworkNeuralnetwork4offeranalternativetoregressionanalysisforbiologicalmodeling.Inrelationtosystemmodeling,thedifferencebetweenartificialneuralnetworksandregressionanalysisisthatanequationisnotassumed,tighterfitsofdataarepossible,anditispossibletoworkwith“noisy”data.Verylittleresearchhasbeenconductedtomodelanimalgrowthusingartificialneuralnetworks5,6.Inourstudy,wechoosetheBack-Propagation(BP)neuralnetwork,whichisafeed-forwardmulti-layernetworkbasedontheBack-PropagationalgorithmdevelopedbyRumelhartandMcCelland7andhasbecomeoneofthemostwidelyusedneuralnetworkinpractice.TheActivationTransferFunction(ATF)ofaBPnetwork,usually,isadifferentiableSigmoid(S-shape)function,whichhelpstoapplynon-linearmappingfrominputstooutputs.Atwo-layerBPnetworkwasusedinourmodel.Thegoodnessoffitsfortheobtainedneuralnetworkmodelwascalculatedbymeansquareerror(MSE)andmeanpercentageerror(MPE).TheMPEandMSEarecomputedas=nttttyyynMPE11(3)nyyMSEnttt=12)(4)wheretyequalstheobservedvalueattimet,tyequalstheestimatedvalue,andnequalsthenumberofobservations.III.EXPERIMENTALRESULTSA.ExperimentSetupWetakethebreedingareaofGuangdongprovinceofChinaforexampletoevaluateourapproach.Thedatasetoften-daymeanairtemperatureisprovidedbyGuangdongProvincialClimateandAgrometeorologicalCente.AndthebroilergrowthdatasetisprovidedbyGuangdongWensFoodGroupLimitedCompany,whichisthemostfamouspoultryraisingcompanyinChina.Andwetakehenofshort-feetbuffBforexampletoevaluatetheinfluenceoftheairtemperaturetotherateforsale.Weselecthengrowthdataof2007,whichconsistsof5714data,andremain4209dataafterdatapreprocessing,whichistoeliminateabnormaldata,suchasabnormalrateforsale,nulldayage,andnullweight.FortheMLRandneuralnetworkmodels,weselect70%samplesrandomlyfortraining,andtherestfortesting.B.CorrelationAnalysisConsideringthatthefullgrowingstageofbroilercanbedividedintochicklingstage(thefirst4weeks)andadultchickenstage.Differentstageshavedifferentphysiologicalcharacteristic.So,inourstudy,firstly,weusescatterplotstoshowtherelationshipbetweentherateforsaleandtheten-daymeanairtemperatureofhen,chicklingstage,andadultchickenstagerespectively,whichareshowninFig.2toFig.4.Andthen,thedegreesofcorrelationsarequantifiedbycorrelationcoefficientR,whichisshowninTable1.0.920.930.940.950.960.970.9871217222732Ten-daymeanairtemperature()RateforsaleFigure2.Ten-daymeanairtemperatureofhenVSrateforsale0.940.950.960.970.9871217222732Ten-daymeanairtemperature()RateforsaleFigure3.Ten-daymeanairtemperatureofchicklingstageVSrateforsale0.940.950.960.970.9871217222732Ten-daymeanairtemperature()RateforsaleFigure4.Ten-daymeanairtemperatureofadultchickenstageVSrateforsaleTABLEI.CORRELATIONCOEFFICIENTCaseRTen-daymeanairtemperatureofhenandrateforsale0.8506Ten-daymeanairtemperatureofchicklingstageandrateforsale0.8932Ten-daymeanairtemperatureofadultchickenstageandrateforsale0.8594AswecanseefromTable1,correlationcoefficientRoftherateforsaleandtheten-daymeanairtemperatureofchicklingstageandadultchickenstageisbiggerthanthatoftherateforsaleandtheten-daymeanairtemperatureofhen,whichindicatesthedivisionofchicklingstageandadultchickenstagetodofurtherresearchisarightchoose.C.MultipleLinearRegressionThefollowingMLRequationisfitforthetrainingdata:21057.00755.0367.93xxy+=(5)whereyistherateforsale,and1xand2xaretheten-daymeanairtemperatureofchicklingstageandadultchickenstagerespectively.D.NeuralNetworkSimilartotheMLRmodel,weusetheten-daymeanairtemperatureofchicklingstageandadultchickenstageasinputs,andsettherateforsaleasoutput.Fig.5showstherealobservedvaluesandpredictedrateforsaleforbothMLRandneuralnetwork(labeledas“NN”inFig.5)methods,usingthetestingdata.Figure5.ComparsionofMLRandneuralnetworkinpredictionTable2showsthestatisticsfortheMLRandneuralnetworkforpredictingbroilerrateforsale.TABLEII.MODELSTATISTICSFORMLRANDNEURALNETWORKFORPREDICTINGRATEFORSALEModelStatisticMPEMSEMLR0.52%4.328E-05Neuralnetwork0.47%3.538E-05AswecanseefromTable2,neuralnetworkmodeloutperformsMLRmodelinbothMPEandMSE.Butfromtheresult,wecanseetheMLRmodelalsohasgoodpredictionperformances.IV.CONCLUSIONSInthispaper,wehavedealtwiththeresearchofthedatafittingforbroilergrowthperformanceparameters.Gradualadvancinganalysismethods,fromcorrelationanalysis,MLR,toneuralnetwork,areproposed.WeusethebroilergrowthdatasetofthemostfamouspoultryraisingcompanyinChina,andtakestheinfluenceoftheairtemperaturetotherateforsaleforexampletoevaluateourapproach.Aswecanseefromexperiment,correlationanalysisisusedtodetectthatthedivisionofchicklingstageandadultchickenstageisgoodforfurtherresearch,sincetheten-daymean
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐廳點(diǎn)名制度規(guī)范要求標(biāo)準(zhǔn)
- 倉(cāng)庫(kù)安檢員登記制度規(guī)范
- 婦聯(lián)會(huì)檔案管理制度
- 總監(jiān)辦檔案室借閱制度
- 醫(yī)院口腔科門(mén)診制度規(guī)范
- 檔案室晉升等級(jí)制度模板
- 北京規(guī)范幼兒園管理制度
- 洗眼器維護(hù)制度規(guī)范標(biāo)準(zhǔn)
- 核酸采樣屋制度規(guī)范要求
- 農(nóng)場(chǎng)檔案管理制度
- 給銷(xiāo)售員講解買(mǎi)賣(mài)合同
- 2026年中考語(yǔ)文專(zhuān)題復(fù)習(xí):12部名著閱讀 知識(shí)點(diǎn)梳理+強(qiáng)化練習(xí)題(含答案)
- 胃造瘺護(hù)理課件
- 2025年人教版(2024)小學(xué)信息科技四年級(jí)(全一冊(cè))教學(xué)設(shè)計(jì)(附教材目錄 P208)
- 《鐵路路基施工與維護(hù)》高職高速鐵路施工與維護(hù)全套教學(xué)課件
- T/CGCC 93-2024文化產(chǎn)品產(chǎn)權(quán)價(jià)值評(píng)估通則
- 臨床用藥解讀-消化系統(tǒng)常見(jiàn)疾病的診療進(jìn)展及處方審核要點(diǎn)
- 高中數(shù)學(xué)北師大版講義(必修二)第05講1.5正弦函數(shù)、余弦函數(shù)的圖象與性質(zhì)再認(rèn)識(shí)3種常見(jiàn)考法歸類(lèi)(學(xué)生版+解析)
- 2025年物料提升機(jī)司機(jī)(建筑特殊工種)模擬考試100題及答案
- 海關(guān)特殊監(jiān)管區(qū)域?qū)n}政策法規(guī)匯編 2025
- 《膽囊結(jié)石伴膽囊炎》課件
評(píng)論
0/150
提交評(píng)論