高教版數(shù)學(xué)教案——組合.doc_第1頁
高教版數(shù)學(xué)教案——組合.doc_第2頁
高教版數(shù)學(xué)教案——組合.doc_第3頁
高教版數(shù)學(xué)教案——組合.doc_第4頁
高教版數(shù)學(xué)教案——組合.doc_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

組 合一、教學(xué)目的:理解組合的意義,掌握組合數(shù)的計(jì)算公式和性質(zhì),并能用它解決一些簡單的問題.二、知識(shí)要點(diǎn):1. 一般地,從n個(gè)不同元素中,任取m(mn)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.2. 一般地,從n個(gè)不同元素中取出m(mn)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù),用符號(hào)表示.3. 組合數(shù)公式:,其中,且mn.組合數(shù)公式還可以寫成:.4. 組合數(shù)的兩個(gè)性質(zhì):;.三、典型例題:例1:100件產(chǎn)品中有合格品90件,次品10件,現(xiàn)從中抽取4件檢查. 都不是次品的取法有多少種? 至少有1件次品的取法有多少種? 不都是次品的取法有多少種? 解: ; ; .例2:從編號(hào)為1,2,3,10,11的共11個(gè)球中,取出5個(gè)球,使得這5個(gè)球的編號(hào)之和為奇數(shù),則一共有多少種不同的取法? 解:分為三類:1奇4偶有 ;3奇2偶有;5奇1偶有 所以一共有+.例3:現(xiàn)有8名青年,其中有5名能勝任英語翻譯工作;有4名青年能勝任德語翻譯工作(其中有1名青年兩項(xiàng)工作都能勝任),現(xiàn)在要從中挑選5名青年承擔(dān)一項(xiàng)任務(wù),其中3名從事英語翻譯工作,2名從事德語翻譯工作,則有多少種不同的選法?解:我們可以分為三類: 讓兩項(xiàng)工作都能擔(dān)任的青年從事英語翻譯工作,有; 讓兩項(xiàng)工作都能擔(dān)任的青年從事德語翻譯工作,有; 讓兩項(xiàng)工作都能擔(dān)任的青年不從事任何工作,有. 所以一共有+42種方法.例4:甲、乙、丙三人值周,從周一至周六,每人值兩天,但甲不值周一,乙不值周六,問可以排出多少種不同的值周表 ?解法一:(排除法)解法二:分為兩類:一類為甲不值周一,也不值周六,有;另一類為甲不值周一,但值周六,有.所以一共有+42種方法.例5:6本不同的書全部送給5人,每人至少1本,有多少種不同的送書方法?解:第一步從6本不同的書中任取2本“捆綁”在一起看成一個(gè)元素有種方法;第二步將5個(gè)“不同元素(書)”分給5個(gè)人有種方法.根據(jù)分步計(jì)數(shù)原理,一共有1800種方法. 變題1:6本不同的書全部送給5人,有多少種不同的送書方法?變題2: 5本不同的書全部送給6人,每人至多1本,有多少種不同的送書方法? 變題3: 5本相同的書全部送給6人,每人至多1本,有多少種不同的送書方法? 答案:1.; 2.; 3.例6:身高互不相同的7名運(yùn)動(dòng)員站成一排,甲、乙、丙三人自左向右從高到矮排列且互不相鄰的排法有多少種?解:(插空法)現(xiàn)將其余4個(gè)同學(xué)進(jìn)行全排列一共有種方法,再將甲、乙、丙三名同學(xué)插入5個(gè)空位置中(但無需要進(jìn)行排列)有種方法.根據(jù)分步計(jì)數(shù)原理,一共有240種方法.例7: 四個(gè)不同的小球放入四個(gè)不同的盒中,一共有多少種不同的放法? 四個(gè)不同的小球放入四個(gè)不同的盒中且恰有一個(gè)空盒的放法有多少種?解: 根據(jù)分步計(jì)數(shù)原理:一共有種方法.(捆綁法)第一步從四個(gè)不同的小球中任取兩個(gè)“捆綁”在一起看成一個(gè)元素有種方法,第二步從四個(gè)不同的盒取其中的三個(gè)將球放入有種方法.所以一共有144種方法.四、歸納小結(jié):如果兩個(gè)組合中的元素完全相同,那么不管元素的順序如何,它們是相同的組合;只有當(dāng)兩個(gè)組合中的元素不完全相同時(shí),才是不同的組合.五、基礎(chǔ)知識(shí)訓(xùn)練:(一)選擇題:1. (99高職-7)在下列問題中:(1)從1,2,3三個(gè)數(shù)字中任取兩個(gè),可以組成多少個(gè)和?(2)從1,2,3三個(gè)數(shù)字中任取兩個(gè),可以組成多少個(gè)沒有重復(fù)數(shù)字的兩位數(shù)?(3)將3個(gè)乒乓球投入5個(gè)容器,每個(gè)容器只能容納一個(gè)乒乓球,問有多少種投法?(4)將3張編號(hào)的電影票給三個(gè)同學(xué),每人一張,有多少種分法?屬于組合問題的是( ) A.(1) B.(2) C.(3) D.(4)2. 從10名同學(xué)中選出3名代表,所有可能的不同選法種數(shù)是( )A.120 B.240 C.720 D.303. (2000-13)凸10邊形共有對角線( ) A.90條 B.70條 C.45條 D.35條4. 某班有50名學(xué)生,其中有一名正班長,一名副班長,現(xiàn)選派5人參加一個(gè)游覽活動(dòng),其中至少有一名班長(正、副均可)參加,共有幾種不同的選法,其中錯(cuò)誤的一個(gè)是( )A.n=+ B. n=-C. n= D.n=-5. 從7名男隊(duì)員和5名女隊(duì)員中選出4人進(jìn)行乒乓球男女混合雙打,不同的組隊(duì)種數(shù)有( )A. B. 4 C. 2 D. A(二)填空題:6. = .7. 平面內(nèi)有12個(gè)點(diǎn),其中任意3點(diǎn)不在同一直線上,以每3點(diǎn)為頂點(diǎn)畫三角形,一共可畫三角形的個(gè)數(shù)是 .8. 從1,2,3,4,5,6,7,8,9這9個(gè)數(shù)中取出2個(gè)數(shù),使它們的和是偶數(shù),共有 種選法.9. 有13個(gè)隊(duì)參加籃球賽,比賽時(shí)先分成二組,第一組7個(gè)隊(duì),第二組6個(gè)隊(duì),各組都進(jìn)行單循環(huán)賽(即每隊(duì)都要與本組其它各隊(duì)比賽一場),然后由各組的前兩名共4個(gè)隊(duì)進(jìn)行單循環(huán)賽決定冠、亞軍,共需要比賽的場數(shù)是 .10. 4個(gè)男同學(xué)進(jìn)行乒乓球雙打比賽,有 種配組方法.(三)解答題:11. 某賑災(zāi)區(qū)醫(yī)療隊(duì)由4名外科醫(yī)生和8名內(nèi)科醫(yī)生組成,現(xiàn)需從中選派5名醫(yī)生去執(zhí)行一項(xiàng)任務(wù).(1)若某內(nèi)科醫(yī)生必須參加,而某外科醫(yī)生因故不能參加,有多少種選派方法?(2)若選派的5名醫(yī)生中至少有1名內(nèi)科和外科醫(yī)生參加,有多少中選派方法?解: (1)依題意,只須從剩余的10名醫(yī)生中選出4名醫(yī)生與內(nèi)定的一名內(nèi)科醫(yī)生組成醫(yī)療隊(duì).故共有=210種選派方法. (2)方法一:5名醫(yī)生全由內(nèi)科醫(yī)生組成,有種方法,故符合題意的方法為=936種; 方法二:我們將內(nèi)科、外科醫(yī)生分別當(dāng)作一組有序?qū)崝?shù)對的前后兩實(shí)數(shù),則按題意組隊(duì)方式可有:(1,4),(2,3),(3,2),(4,1)四種,故共有+=736種.12. 馬路上有編號(hào)為1,2,3,10的十盞路燈,為節(jié)約用電又不影響照明,可以把其中3盞燈關(guān)掉,但不可以同時(shí)關(guān)掉相鄰的兩盞或三盞,在兩端的燈都不能關(guān)掉的情況下,有多少種不同的關(guān)燈方法?解:(插空法)本題等價(jià)于在7只亮著的路燈之間的6個(gè)空檔中插入3只熄掉的燈,故所求方法總數(shù)為種方法.13. 九張卡片分別寫著數(shù)字0,1,2,8,從中取出三張排成一排組成一個(gè)三位數(shù),如果6可以當(dāng)作9使用,問可以組成多少個(gè)三位數(shù)?解:可以分為兩類情況: 若取出6,則有種方法;若不取6,則有種方法.根據(jù)分類計(jì)數(shù)原理,一共有+602種方法.14. 在產(chǎn)品檢驗(yàn)時(shí),常從產(chǎn)品中抽出一部分進(jìn)行檢查,現(xiàn)從10件產(chǎn)品中任意抽3件.(1) 一共有多少種不同的抽法?(2) 如果10件產(chǎn)品中有3件次品,抽出的3件中恰好有1件是次品的抽法有多少種?(3) 如果10件產(chǎn)品中有3件次品,抽出的3件中至少有1件是次品的抽法有多少種?六、綜合能力提高:15. 6本不同的書,按下列要求各有多少種不同的選法: 分給甲、乙、丙三人,每人兩本; 分為三份,每份兩本; 分為三份,一份一本,一份兩本,一份三本; 分給甲、乙、丙三人,一人一本,一人兩本,一人三本; 分給甲、乙、丙三人,每人至少一本. 解: 根據(jù)分步計(jì)數(shù)原理得到:種. 分給甲、乙、丙三人,每人兩本有種方法,這個(gè)過程可以分兩步完成:第一步分為三份,每份兩本,設(shè)有x種方法;第二步再將這三份分給甲、乙、丙三名同學(xué)有種方法.根據(jù)分步計(jì)數(shù)原理可得:,所以.因此分為三份,每份兩本一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論