已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
CFD simulation in Laval nozzleSIAE 090441313AbstractWe aim to simulate the quasi one dimension flow in the Laval nozzle based on CFD computation in this paper .We consider the change of the temperature ,the pressure ,the density and the speed of the flow to study the flow.The analytic solution of the flow in the Laval nozzle is provided when the input velocity is supersonic.We use the Mac-Cormack Explicit Difference Scheme to slove the question.Key words :Laval nozzle ,CFD,throat narrow.Contents Abstract .1Introduction .2Simulation of one-dimensional steady flow.3 Basis equations .3Dimensionless .10Mac -Cormack Explicit Difference Scheme.11Boundary conditions .13Reference .13Annex .14IntroductionLaval nozzle is the most commonly used components of rocket engines and aero-engine, constituted by two tapered tube, one shrink tube, another expansion tube.Laval nozzle is an important part of the thrust chamber. The first half of the nozzle from large to small contraction to a narrow throat to the middle. Narrow throat and then expand outwards from small to big to the end. The gas in the rocket body by the front half of the high pressure into the nozzle, through the narrow throat to escape by the rear half. This architecture allows the speed of the air flow changes due to changes in the jet cross-sectional area, the airflow from subsonic to the speed of sound, until accelerated to transonic. So, people flared nozzle called transonic nozzle. Since it was invented by the Swedish Laval, also known as Laval nozzle. Analysis of the principle of the Laval nozzle. The rocket engines of the gas flow in the combustion chamber under pressure, after the backward movement of the nozzle into the nozzle . At this stage, the gas movement follow the principle of the fluid moves in the tube , the small cross-section at the flow rate large sectional large flow velocity, thus accelerating airflow.Laval nozzle When you reach the narrow throat, the flow rate has exceeded the speed of sound. Transonic fluid movement they no longer follow the principle of cross-section at small velocity, at a flow rate of small cross-section large, but on the contrary the larger cross-sectional flow faster. The gas flow speed is further accelerated to 2-3 km / sec,equivalent to 7-8 times the speed of sound, thus creating a great thrust. The Laval nozzle fact played the role of a flow rate Enlargement Device. In fact, not just rocket engines, missile nozzle is this horn shape, so the Laval nozzle weapons has a very wide range of applications.Simulation of one-dimensional steady flow1.Basis equationsAs we know,Laval nozzle is a zooming nozzle flow channel to narrow further expansion.Allows the airflow to further accelerate to reach the speed of sound at the throat into a supersonic flow.Now,we want to simulate the quasi one-dimension flowing.Firstly,we will analysis on theory.The flow is isentropic,so we can apply the following equations.(1)Continuity equation:In the flow, we need to consider the following physical quantities.The pression ,the temperature ,the speed of the fluid and the cross-section .They are respectively represented by P,T,u,A. We apply the conservation of the mass.we will obtain this equation.And then we get(2)Equation of momentum(in the direction of the axis)According to the theory of momentum:The simplification of this equation is (3)Energy equationIdeal gas equation of stateR is ideal gas constant,R=8.314J/g/K.M is the masse per mole.(4)The equation of ThermodynamicsBecause the flow is isentropic,so dS=0And we use the equation of momentum,we haveCombine with others equations,we result withWe called u the speed of sound,we noted a. We apply the continuity equationWe defined the Mach number If we have the relation as We have the figure So M1,supersonicIf dA0.If dA0,we have du0.M1,subsonicIf dA0.If dA0,we have du0.This is the reason why this architecture allows the speed of the air flow changes due to changes in the jet cross-sectional area, the airflow from subsonic to the speed of sound, until accelerated to transonic.We have the consequence as followsThen we replace P and T in this equation.The consequence will becomeTo simplifyIn this equation,the variable is the much number,as the speed of the flow is from subsonic to supersonic ,so we can suppose that there exist a critical section where M equal to 1.ThenFigure This section is called narrow throat.The same method,we can obtainFigure We know the section in narrow throat is minimum.we can judge that the function attains the maximum or not 2 Dimensionless Combining CFD with one-dimension flow theory,we make the variables dimensionless.According to the condition initial which is given .We note We use the variable dimensionless to represent the equations.And the equations have the following changes (1)Continuity equation(2)Equation of momentum(3)Energy equation3.Mac-Cormack Explicit Difference SchemeThen we use the Mac-Cormack Explicit Difference Scheme,the principal of this theory is using the surrounding points to present differential parts of a point and we consider the question with one dimension.The distance between two points is h.So we can use two points adjacent to present the differential parts.Using this method,we make an estimation and correct the error.Estimationcorrect the error Intermediate value Then the equation has the following changeAt the moment t ,we will know the value in the whole plan .And we define 4. Boundary conditions Hyperbola equation has two characteristics lines.When one of the characteristics lines enter the flow zone .We admit a parameter to be fixed ,otherwise when one of the characteristics go out the flow zone ,we admit a parameter to be a variable depends the time.Applying this theory ,we can determine the boundary conditions.Reference :1章利特,高鐵瑜,夏慶鋒,徐廷相.拉瓦爾噴管內(nèi)的準(zhǔn)一維定常流動.中國科技論文在線。2王平,李昌平,陳柏松.基于CFD數(shù)值模擬的拉瓦爾噴管流場分析.航空計算技術(shù)2012年7月第42卷第4期。3王如根,趙瑞賢,李全通.基于實際發(fā)動機(jī)拉瓦爾噴管的流場分析.99學(xué)術(shù)會議空軍工程學(xué)院飛機(jī)推進(jìn)系統(tǒng)實驗室。4周文祥,黃金泉,周人治.拉瓦爾噴管計算模型的改進(jìn)及其整機(jī)仿真驗證.航空動力學(xué)報2009年11月第24卷第11期。5王克印,韓星星,張曉濤,劉耀鵬,陳吉潮.縮擴(kuò)型超音速噴管的設(shè)計與仿真.中國工程機(jī)械學(xué)報2011年9月第9卷第3期。Annex 1:Figure 1程序:x=0:0.1:5;a=1.398+0.374*tanh(0.8*x-4);plot(x,a)Figure 2程序:gama=1.33;M=0:0.01:2;A=(1./M).*(1+(gama-1).*M.2./2)./(gama+1)./2).(gama+1)./(2.*(gama-1);Xlabel(variable M);ylabel(variable A);Plot(M,A)Figure 3程序:gama=1.33;M=0:0.01:2;T=(gama+1)./2)./(1+(gama-1.).*M.2./2);P=(gama+1)./2)./(1+(gama-1).*M.2./2).(1./(gama-1);rho=(P./T).*(gama-1)./2)./(1+(gama-1).*M.2./2).(gama./(gama-1);x=T;P;rho;y=M;M;plot(M,T,M,P,M,rho);subplot(221);plot(M,T);xlabel(variable M);ylabel(variable T);subplot(222);plot(M,P);xlabel(variable M);ylabel(variable P);subplot(2,2,3:4);plot(M,rho);xlabel(variable M);ylabel(variable rho);模擬程序(未完成):M1=1.5;%input(來流馬赫數(shù)M1=);P1=47892.4;%input(來流氣體壓強(qiáng)P1=);rho1=1.222;%input(來流氣體密度rho1=);gama=1.4;%input(比熱比gama=);R=8.314;%input(氣體常量R=);C=1.5;%input(科朗數(shù)C=);T1=293;%input(來流氣體溫度T1=);a1=sqrt(gama*R*T1);V1=M1*a1;L=10; %input(噴管長度L=);I=300;%input(等分步數(shù)I=);N=1000;%input(時間步數(shù)N=);d_t=0;e=0;delta_x=1/(I-1);A1=1.398-0.347*tanh(4);A=zeros(I,1);V=zeros(I,N);rho=zeros(I,N);T=zeros(I,N);ahead_V=zeros(I,N);ahead_rho=zeros(I,N);ahead_T=zeros(I,N);ahead_der_V=zeros(I,N);ahead_der_rho=zeros(I,N);ahead_der_T=zeros(I,N);der_V=zeros(I,N);der_rho=zeros(I,N);der_T=zeros(I,N);ave_der_V=zeros(I,N);ave_der_rho=zeros(I,N);ave_der_T=zeros(I,N);delta_t=zeros(I,N);a=zeros(I,N);e=zeros(I,N); for n=1:N ahead_V(1,n)=M1; ahead_rho(1,n)=1; ahead_T(1,n)=1; V(1,n)=M1; rho(1,n)=1; T(1,n)=1;endfor i=1:I V(i,1)=(1.5+1.09*i*delta_x)*sqrt(T(i,1); rho(i,1)=1-0.3146*i*delta_x; T(i,1)=1-0.2314*i*delta_x; A(i,1)=(1.398+0.347*tanh(0.8*(i-1)*delta_x*L-4);endfor n=1:N for i=2:(I-1) der_V(i,n)=-V(i,n)*(V(i+1,n)-V(i,n)/delta_x-1/gama*(T(i+1,n)-T(i,n)/delta_x+T(i,n)/rho(i,n)*(rho(i+1,n)-rho(i,n)/delta_x); der_rho(i,n)=-rho(i,n)*(V(i+1,n)-V(i,n)/delta_x-V(i,n)*(rho(i+1,n)-rho(i,n)/delta_x-rho(i,n)*V(i,n)*(log(A(i+1,1)-log(A(i,1)/delta_x; der_T(i,n)=-V(i,n)*(T(i+1,n)-T(i,n)/delta_x-(gama-1)*T(i,n)*(V(i+1,n)-V(i,n)/delta_x+V(i,n)*(log(A(i+1,1)-log(A(i,1)/delta_x); a(i,n)=sqrt(gama*R*T(i,n)/a1; delta_t(i,n)=C*delta_x/(V(i,n)+a(i,n); end d_t=min(delta_t(i,n); for i=2:1:(I-1) ahead_V(i,n+1)=V(i,n)+der_V(i,n)*d_t; ahead_rho(i,n+1)=rho(i,n)+der_rho(i,n)*d_t; ahead_T(i,n+1)=T(i,n)+der_T(i,n)*d_t; ahead_der_V(i,n)=-ahead_V(i,n+1)*(ahead_V(i,n+1)-ahead_V(i-1,n+1)/delta_x-1/gama*(ahead_T(i,n+1)-a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年供應(yīng)鏈控制塔平臺項目公司成立分析報告
- 2026年傳感器項目公司成立分析報告
- 2026年縣域商業(yè)體系升級項目可行性研究報告
- 2026年新能源電力交易服務(wù)項目可行性研究報告
- 2026年工業(yè)廢水近零排放改造項目公司成立分析報告
- 2026年內(nèi)衣洗衣機(jī)項目可行性研究報告
- 2026年中級經(jīng)濟(jì)師經(jīng)濟(jì)政策與實務(wù)練習(xí)題庫
- 2026年現(xiàn)代藝術(shù)作品欣賞與評論試題
- 2026年能源行業(yè)危機(jī)應(yīng)對能力測試題能源安全與輿情管理題
- 2026年研究生歷史學(xué)科期末復(fù)習(xí)預(yù)測題
- 2025年新版安全生產(chǎn)法知識考試試卷(含答案)
- 2025動物防疫專員試題及答案
- 2026年齊齊哈爾高等師范專科學(xué)校單招職業(yè)技能測試題庫必考題
- 輸變電工程安全教育課件
- 第9章 施工中的難點與要點分析
- 大健康行業(yè)經(jīng)營保障承諾函(7篇)
- 胖東來管理制度全公開執(zhí)行標(biāo)準(zhǔn)
- 單元復(fù)習(xí):解碼中國-我國區(qū)域差異的深度整合與素養(yǎng)提升
- 書法培訓(xùn)班安全制度
- GB/T 44626.2-2025微細(xì)氣泡技術(shù)表征用樣品中氣泡消除方法第2部分:消除技術(shù)
- 4s店安全教育培訓(xùn)課件
評論
0/150
提交評論