全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
MachLearn(2006)63:211215DOI10.1007/s10994-006-8919-xGUESTEDITORIALMachinelearningandgamesMichaelBowlingJohannesFurnkranzThoreGraepelRonMusickPublishedonline:10May2006SpringerScience+BusinessMedia,LLC2006Thehistoryoftheinteractionofmachinelearningandcomputergame-playinggoesbacktotheearliestdaysofArtificialIntelligence,whenArthurSamuelworkedonhisfamouschecker-playingprogram,pioneeringmanymachine-learningandgame-playingtechniques(Samuel,1959,1967).Sincethen,bothfieldshaveadvancedconsiderably,andresearchintheintersectionofthetwocanbefoundregularlyinconferencesintheirrespectivefieldsandingeneralAIconferences.ForsurveysofthefieldwerefertoGinsberg(1998),Schaeffer(2000),Furnkranz(2001);editedvolumeshavebeencompiledbySchaefferandvandenHerik(2002)andbyFurnkranzandKubat(2001).Inrecentyears,thecomputergamesindustryhasdiscoveredAIasanecessaryingredienttomakegamesmoreentertainingandchallengingand,viceversa,AIhasdiscoveredcom-putergamesasaninterestingandrewardingapplicationarea.TheindustrysperspectiveiswitnessedbyaplethoraofrecentbooksongentleintroductionstoAItechniquesforgameprogrammers(Collins,2002;Champanard,2003;Bourg&Seemann,2004;Schwab,2004)oraseriesofeditedcollectionsofarticles(Rabin,2002,2003,2006).AIresearchoncomputergamesbegantofollowdevelopmentsinthegamesindustryearlyon,butsinceJohnLairdskeynoteaddressattheAAAI2000conference,inwhichheadvocatedInteractiveComputerGamesasachallengingandrewardingapplicationareaforAI(Laird&vanLent,2001),numerousworkshops(Fu&Orkin,2004;Ahaetal.,2005),conferences,andspecialissuesofjournals(Forbus&Laird,2002)demonstratethegrowingimportanceofgame-playingapplicationsforArtificialIntelligence.M.Bowling(envelopeback)e-mail:bowlingcs.ualberta.caJ.Furnkranze-mail:fuernkranzinformatik.tu-darmstadt.deT.Graepele-mail:R.Musicke-mail:Springer212MachLearn(2006)63:211215Games,whethercreatedforentertainment,simulation,oreducation,providegreatop-portunitiesformachinelearning.ThevarietyofpossiblevirtualworldsandthesubsequentML-relevantproblemsposedfortheagentsinthoseworldsislimitedonlybytheimagination.Furthermore,notonlyisthegamesindustrylargeandgrowing(havingsurpassedthemovieindustryinrevenueafewyearsback),butitisfacedwithatremendousdemandfornoveltythatitstrugglestoprovide.Againstthisbackdrop,machinelearningdrivensuccesseswoulddrawhigh-profileattentiontothefield.Surprisinglyhowever,themorecommercialthegametodate,thelessimpactlearninghasmade.Thisisquiteunlikeothergreatmatchesbetweenapplicationanddata-drivenanalyticssuchasdataminingandOLAP.Topicsofparticularimportanceforsuccessfulgameapplicationsincludelearninghowtoplaythegamewell,playermodeling,adaptivity,modelinterpretationandofcourseperfor-mance.Theseneedscanberecastasacallfornewpracticalandtheoreticaltoolstohelpwith:learningtoplaythegame:Gameworldsprovideexcellenttestbedsforinvestigatingthepoten-tialtoimproveagentscapabilitiesvialearning.Theenvironmentcanbeconstructedwithvaryingcharacteristics,fromdeterministicanddiscreteasinclassicalboardandcardgamestonon-deterministicandcontinuousasinactioncomputergames.Learningalgorithmsforsuchtaskshavebeenstudiedquitethoroughly.Probablythebest-knowninstanceofalearninggame-playingagentistheBackgammon-playingprogramTD-Gammon(Tesauro,1995).learningaboutplayers:Opponentmodeling,partnermodeling,teammodeling,andmultipleteammodelingarefascinating,interdependentandlargelyunsolvedchallengesthataimatimprovingplaybytryingtodiscoverandexploittheplans,strengths,andweaknessesofaplayersopponentsand/orpartners.OneofthegrandchallengesinthislineofworkaregameslikePoker,whereopponentmodelingiscrucialtoimproveovergame-theoreticallyoptimalplay(Billingsetal.,2002).behaviorcaptureofplayers:Creatingaconvincingavatarbasedonaplayersin-gamebe-haviorisaninterestingandchallengingsupervisedlearningtask.Forexample,inMassiveMultiplayerOnlineRole-playingGames(MMORGs)anavatarthatistrainedtosimulateausersgame-playingbehaviorcouldtakehiscreatorsplaceattimeswhenthehumanplayercannotattendtohisgamecharacter.FirststepsinthisareahavebeenmadeincommercialvideogamessuchasForzaMotorsport(Xbox)wheretheplayercantraina“Drivatar”thatlearnstogoaroundthetrackinthestyleoftheplayerbyobservingandlearningfromthedrivingstyleofthatplayerandgeneralizingtonewtracksandcars.modelselectionandstability:Onlinesettingsleadtowhatiseffectivelytheunsupervisedconstructionofmodelsbysupervisedalgorithms.Methodsforbiasingtheproposedmodelspacewithoutsignificantlossofpredictivepowerarecriticalnotjustforlearningefficiency,butinterpretiveabilityandend-userconfidence.optimizingforadaptivity:Buildingopponentsthatcanjustbarelyloseininterestingwaysisjustasimportantforthegameworldascreatingworld-classopponents.Thisrequiresbuildinghighlyadaptivemodelsthatcansubstantivelypersonalizetoadversariesorpart-nerswithawiderangeofcompetenceandrapidshiftsinplaystyle.Byintroducingaverydifferentsetofupdateandoptimizationcriteriaforlearners,awealthofnewresearchtargetsarecreated.modelinterpretation:“Whatsmynextmove”isnottheonlyquerydesiredofmodelsinagame,butitiscertainlytheonewhichgetsthemostattention.Creatingtheillusionofintelligencerequires“paintingapicture”ofanagentsthinkingprocess.TheabilitytodescribethecurrentstateofamodelandtheprocessofinferenceinthatmodelfromSpringerMachLearn(2006)63:211215213decisiontodecisionenablesqueriesthatprovidethefoundationforahostofsocialactionsinagamesuchaspredictions,contracts,counter-factualassertions,advice,justification,negotiation,anddemagoguery.Thesecanhaveasmuchormoreinfluenceonoutcomesasactualin-gameactions.performance:Resourcerequirementsforupdateandinferencewillalwaysbeofgreatimpor-tance.TheAIdoesnotgetthebulkoftheCPUormemory,andthemachinesdrivingthemarketwillalwaysbeunderpoweredcomparedtotypicaldesktopsatanypointintime.Thisspecialissuecontainsthreearticlesandoneresearchnotethatspanthewiderangeofresearchintheintersectionofgameplayingandmachinelearning.Inthefirstcontribution,AdaptiveGameAIwithDynamicScripting,Sproncketal.tackletheproblemofadaptivitybydynamicallymodifyingtheruleswhichgoverncharacterbe-haviorin-game.Thispaperistargetedatthecommercialgamesindustry,andprovidessomegoodinsightintoproblemsfacedbythecreatorsoftodaysroleplayinggames.Theauthorsproposefourfunctionalandfourcomputationalrequirementsforon-linelearningingames.Theythenproceedtoshowhowdynamicscriptingfitsintothoserequirements,andprovideexperimentalevidenceofthepotentialpromiseofthisapproach.Dynamicscriptingcanbecharacterizedasstochasticoptimization.Theauthorsevaluatedynamicscriptingonboththetaskofprovidingthetoughestopponentpossible,andonthetaskofdifficultyscaling.Gooddifficultyscalingunderpinswhatmakesmostgamesfun,andsolvingthisproblemisoftenverychallengingandthesolutionsarealmostalwaysad-hoc.TheauthorspresentexperimentaldatathatcomparesdynamicscriptingtostaticopponentsandthosecontrolledbyQ-LearningandMonteCarlo.Thetestenvironmentsincludebothsimulatedgamesandanactualcommercialgame(NeverwinterNights),andhelptopresentaveryinterestingstudywhichissuretoblazeapathforfurtherinterestingresearch.Thesecondpaper,UniversalParameterOptimizationinGamesBasedonSPSAbySzepesvariandKocsis,considerstheproblemofoptimizingparameterstoimprovetheperfor-manceofparameterizedpoliciesforgameplay.TheyconsidertheSimultaneousPerturbationStochasticApproximation(SPSA)methodintroducedbySpall(1992)whichisageneralgra-dientfreeoptimizationmethodthatisapplicabletoawiderangeofoptimizationproblems.TheauthorsdemonstratethatSPSAisapplicabletoawiderangeoftypicaloptimizationproblemsingamesandproposeseveralmethodstoenhancetheperformanceofSPSA.Theseenhancementsincludetheuseofcommonrandomnumbersandantitheticvariables,acombinationwithRPROPandthereuseofsamples.TheapplicationtogamesconsidersthedomainoflearningtoplayOmahaHi-LoPokerwiththeirpokerprogramMcRaise.SPSAcombinedwiththeirproposedenhancementsleadstopokerperformancecompetitivewithTD-learning,themethodsosuccessfullyusedbyTesauro(1995),forlearningaworld-classevaluationfunctionforBackgammonandstillusedintodaysworldclassbackgammonprogramssuchasJellyFishandSnowie.Thethirdcontribution,LearningtoBidinBridgebyMarkovitchandAmit,addressestheproblemofbiddinginthegameofBridge.WhileresearchinBridgeplayinghaspioneeredMonteCarlosearchalgorithmsfortheplayingphaseofcardgamesandresultedinprogramsofconsiderablestrength(Ginsberg,1999),thebiddingphase,inwhichthegoal(theso-calledcontract)ofthesubsequentplayingphaseisdetermined,isstillamajorweaknessofexistingBridgeprograms.ThispaperisaboutanapproachthatsupportsthedifficultbiddingphaseinthegameBridgewithtechniquesfrommachinelearning,inparticularopponentmodelingviathelearningofdecisionnetsandviamodel-basedMonteCarlosamplingtoaddresstheproblemofhiddeninformation.Theevaluationclearlyestablishesthatthesystemimproveswithlearning,anditseemsthatthelevelofplayachievedbythisprogramsurpassesthelevelSpringer214MachLearn(2006)63:211215ofthebiddingmoduleofcurrentstate-of-the-artprogramsandapproachesthatofanexpertplayer.Finally,SadikovandBratkopresentaresearchnoteonLearningLong-termChessStrate-giesfromDatabases.Theyaddresstheproblemofknowledgediscoveryingamedatabases.Formanygamesorsubgames(suchaschessendgames),therearegamedatabasesavailable,whichcontainperfectinformationaboutthegameinthesensethatforeverypossibleposi-tion,thegame-theoreticoutcomeisstoredinadatabase.However,althoughthesedatabasescontainallinformationtoallowperfectplay,theyarenotamenabletohumananalysis,andaretypicallynotverywellunderstood.Forexample,chessGrandmasterJohnNunnanalyzedsev-eralsimplechessendgamedatabasesresultinginaseriesofwidelyacknowledgedendgamebooks(Nunn,1992,1994b,1995),butreadilyadmittedthathedoesnotyetunderstandallaspectsofthedatabasesheanalyzed(Nunn,1994a).Thispaperreportsonanattempttomakeheadwaybyautomaticallyconstructingplayingstrategiesfromchessendgamedatabases.Itdescribesamethodforbreakinguptheproblemintodifferentgamephases.Foreachphase,itisthenproposedtolearnaseparateevaluationfunctionvialinearregression.Experimentsinthethekingandrookvs.king,orkingandqueenvs.kingandrookendgamesshowencouragingresults,butalsoillustratethedifficultyoftheproblem.MachinelearninghasbeeninstrumentaltodateinbuildingsomeoftheworldsbestplayersinBackgammonandhasleadtointerestingresultsingameslikeChessandGo.Tomoveintomainstreamcommercialgames,machinelearningresearchhastofacewhatinmanywaysaretheharderproblemsoflosingininterestingways,creatingmoreusefulillusionsofintelligence,hyper-fastadaptation,andtakingonpersona.Thearticlesinthisspecialissueprovideaglimpseintodifferentfacetsofalloftheseproblems.ReferencesAha,D.W.,Munoz-AvilaH.M.,&vanLent,M.(Eds.),(2005).Reasoning,representation,andlearningincomputergames:ProceedingsoftheIJCAIworkshop.Edinburgh,Scotland:NavalResearchLaboratory,NavyCenterforAppliedResearchinArtificialIntelligence.TechnicalReportAIC-05-127.Billings,D.,Pena,L.,Schaeffer,J.,&Szafron,D.(2002).Thechallengeofpoker.ArtificialIntelligence,134(12),201240,SpecialIssueonGames,ComputersandArtificialIntelligence.Bourg,D.M.,&SeemannG.(2004).AIforgamedevelopersCreatingintelligentbehavioringames.OReilly.Champanard,A.(2003).AIgamed
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年湖南機電職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及參考答案詳解一套
- 2026年河北青年管理干部學(xué)院單招職業(yè)傾向性考試題庫含答案詳解
- 2026年湖南外國語職業(yè)學(xué)院單招綜合素質(zhì)考試題庫及參考答案詳解
- 四川省成都市蓉城名校聯(lián)盟2024-2025學(xué)年高二上學(xué)期期中考試政治考試政治參考答案及評分標(biāo)準(zhǔn)
- 云南稅務(wù)面試題目及答案
- 安全攻防面試題及答案
- 2025~2026學(xué)年濟(jì)南天橋區(qū)濼口實驗學(xué)校九年級上學(xué)期12月份物理考試試卷以及答案
- 2019年7月國開電大行管??啤侗O(jiān)督學(xué)》期末紙質(zhì)考試試題及答案
- 質(zhì)量檢驗員培訓(xùn)
- 2025年臺州市中醫(yī)院衛(wèi)技高層次人才公開招聘備考題庫及參考答案詳解
- 銀行理財經(jīng)理先進(jìn)工作事跡材料
- 自動化控制系統(tǒng)調(diào)試預(yù)案
- 警務(wù)實戰(zhàn)執(zhí)法用語課件
- “無廢校園”建設(shè)指引
- 蔬菜種植記課件
- 操作系統(tǒng)期末考試試題及答案
- 引體向上教學(xué)課件下載
- 典型刑事案件匯報課件
- 醫(yī)院體檢中心主任競聘演講
- 外科手術(shù)病歷書寫規(guī)范與要點
- 2025年機械員考試題庫答案
評論
0/150
提交評論