高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納_第1頁
高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納_第2頁
高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納_第3頁
高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納_第4頁
高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余5頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納 高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)一、集合有關(guān)概念1.集合的含義2.集合的中元素的三個(gè)特性:(1)元素的確定性如:世界上最高的山(2)元素的互異性如:由happy的字母組成的集合h,a,p,y(3)元素的無序性:如:a,b,c和a,c,b是表示同一個(gè)集合3.集合的表示:如:我校的籃球隊(duì)員,太平洋,大西洋,印度洋,北冰洋(1)用拉丁字母表示集合:a=我校的籃球隊(duì)員,b=1,2,3,4,5(2)集合的表示方法:列舉法與描述法。注意:常用數(shù)集及其記法:xkb1.com非負(fù)整數(shù)集(即自然數(shù)集)記作:n正整數(shù)集:nx或n+整數(shù)集:z有理數(shù)集:q實(shí)數(shù)集:r1)列舉法:a,b,c2)描述

2、法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合x?r|x-32,x|x-323)語言描述法:例:不是直角三角形的三角形4)venn圖:4、集合的分類:(1)有限集含有有限個(gè)元素的集合(2)無限集含有無限個(gè)元素的集合(3)空集不含任何元素的集合二、集合間的基本關(guān)系1.“包含”關(guān)系子集注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba2.“相等”關(guān)系:a=b(55,且55,則5=5)實(shí)例:設(shè)a=x|x2-1=0b=-1,1“元素相同則兩集合相等”即:任何一個(gè)集合是它本身的子集。a?a真子集:如果a?b,且a?

3、b那就說集合a是集合b的真子集,記作ab(或ba)如果a?b,b?c,那么a?c如果a?b同時(shí)b?a那么a=b3.不含任何元素的集合叫做空集,記為規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。4.子集個(gè)數(shù):有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集三、集合的運(yùn)算運(yùn)算類型交集并集補(bǔ)集定義由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.記作ab(讀作a交b),即ab=x|xa,且xb.由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:ab(讀作a并b),即ab=x|xa,或xb).基本初等函數(shù)一、指

4、數(shù)函數(shù)(一)指數(shù)與指數(shù)冪的運(yùn)算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且.當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成(0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),2.分?jǐn)?shù)指數(shù)冪正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:0的正分?jǐn)?shù)

5、指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)(二)指數(shù)函數(shù)及其性質(zhì)1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)閞.注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.2、指數(shù)函數(shù)的圖象和性質(zhì)函數(shù)的應(yīng)用1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).3、函

6、數(shù)零點(diǎn)的求法:求函數(shù)的零點(diǎn):1(代數(shù)法)求方程的實(shí)數(shù)根;2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).4、二次函數(shù)的零點(diǎn):二次函數(shù).1)0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).2)=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).3)0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).必修一函數(shù)重點(diǎn)知識(shí)整理1. 函數(shù)的奇偶性(1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));(3)判斷

7、函數(shù)奇偶性可用定義的等價(jià)形式:f(x)f(-x)=0或 (f(x)0);(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;(5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;2. 復(fù)合函數(shù)的有關(guān)問題(1)復(fù)合函數(shù)定義域求法:若已知 的定義域?yàn)閍,b,其復(fù)合函數(shù)fg(x)的定義域由不等式ag(x)b解出即可;若已知fg(x)的定義域?yàn)閍,b,求 f(x)的定義域,相當(dāng)于xa,b時(shí),求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;3.函數(shù)圖像(或方程曲線的對(duì)稱性)(1)證明函數(shù)

8、圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;(2)證明圖像c1與c2的對(duì)稱性,即證明c1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在c2上,反之亦然;(3)曲線c1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線c2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲線c1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線c2方程為:f(2a-x,2b-y)=0;(5)若函數(shù)y=f(x)對(duì)xr時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x= 對(duì)稱;

9、4.函數(shù)的周期性(1)y=f(x)對(duì)xr時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,則y=f(x)是周期為2a的周期函數(shù);(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2a的周期函數(shù);(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4a的周期函數(shù);(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2 的周期函數(shù);(5)y=f(x)的圖象關(guān)于直線x=a,x=b(ab)對(duì)稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);(6)y=f(x)對(duì)xr時(shí),f(x+a)=-f(x)(或f(x+a)=

10、 ,則y=f(x)是周期為2 的周期函數(shù);5.方程k=f(x)有解 kd(d為f(x)的值域);6.af(x) 恒成立 af(x)max,; af(x) 恒成立 af(x)min;7.(1) (a0,a1,b0,nr+);(2) l og a n= ( a0,a1,b0,b1);(3) l og a b的符號(hào)由口訣“同正異負(fù)”記憶;(4) a log a n= n ( a0,a1,n0 );8. 判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):(1)a中元素必須都有象且唯一;(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象;9. 能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;(5) y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)閍,值域?yàn)閎,則有ff-1(x)=x(xb),f-1f(x)=x(xa).11.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論