3.2.3 直線的一般式方程教學設計_第1頁
3.2.3 直線的一般式方程教學設計_第2頁
3.2.3 直線的一般式方程教學設計_第3頁
3.2.3 直線的一般式方程教學設計_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、3.2.3 直線的一般式方程教學設計蒼南宜山高中 林賢數一、教學目標1、知識與技能(1)明確直線方程一般式的形式特征;(2)會把直線方程的一般式化為斜截式,進而求斜率和截距;(3)會把直線方程的點斜式、兩點式化為一般式。2、過程與方法 學會用分類討論的思想方法解決問題。體會坐標法的數形結合思想。3、情態(tài)態(tài)度與價值觀認識事物之間的普遍聯(lián)系與相互轉化;用聯(lián)系的觀點看問題。感受數學文化的價值。二、教學重點、難點:1、重點:直線方程的一般式和數形結合思想的應用。2、難點:對直線方程一般式的理解與應用。三、教學設想問 題設計意圖師生活動引例:復習直線方程的四種特殊形式。同時為后面的特殊形式轉化為一般式作

2、了題目上的鋪墊。 學生思考并個別作答,(四種不同的方程形式)。教師板書答案。我們所學過的直線方程有哪幾種形式?它們各有何局限性?從特殊到一般的給出四種形式,進一步理解特殊式的局限性,為引出一般式提供必要性的準備。師生共同完成表格填寫:名稱方程局限性觀察上述四種形式的方程,回答它們的共同之處?觀察感知,提煉出直線方程的一般式。生回答:Ax+By+C=0(A,B不同時為0)師簡單解釋為什么A,B不同時為0。平面直角坐標系中的每一條直線與一個關于x,y的二元一次方程Ax+By+C=0(A,B不同時為0)有否對應關系?啟發(fā)學生探究生答。師追問:是一一對應關系嗎?問 題設計意圖師生活動思考:1、(1)平

3、面直角坐標系中的每一條直線都可以用一個關于的二元一次方程表示嗎?(2)每一個關于的二元一次方程(A,B不同時為0)都表示一條直線嗎?從兩方面操作確認兩者關系。使學生理解直線和二元一次方程的關系。同時培養(yǎng)學生的分類討論的思想。教師引導學生用分類討論的方法思考探究問題(1),即直線存在斜率和直線不存在斜率時求出的直線方程是否都為二元一次方程。對于問題(2),教師引導學生理解要判斷某一個方程是否表示一條直線,只需看這個方程是否可以轉化為直線方程的某種形式。為此要對B分類討論,即當時和當B=0時兩種情形進行變形。然后由學生去變形判斷,得出結論: 關于的二元一次方程,它都表示一條直線。 教師概括指出:由

4、于任何一條直線都可以用一個關于的二元一次方程表示;同時,任何一個關于的二元一次方程都表示一條直線。 我們把關于關于的二元一次方程(A,B不同時為0)叫做直線的一般式方程,簡稱一般式(general form).2、直線方程的一般式與其他幾種形式的直線方程相比,它有什么優(yōu)點?使學生理解直線方程的一般式的與其他形式的不同點。 學生通過對比、討論,發(fā)現直線方程的一般式與其他形式的直線方程的一個不同點是:直線的一般式方程能夠表示平面上的所有直線,而點斜式、斜截式、兩點式方程,都不能表示與軸垂直的直線。同時它有代數形式上的規(guī)范性特點。3、在方程中,A,B,C為何值時,方程表示的直線:(1)平行于軸;(2

5、)平行于軸;(3)與軸重合;(4)與重合。(5)過原點使學生理解二元一次方程的系數和常數項對直線的位置的影響。 教師引導學生回顧前面所學過的與軸平行和重合、與軸平行和重合的直線方程的形式。然后由學生自主探索得到問題的答案。教師板書:一個坐標系下的各種特殊直線。問 題設計意圖師生活動例1的教學 請將引例中的4條直線方程轉化為一般式方程。 使學生體會把直線方程的特殊式轉化為一般式,把握直線方程一般式的特點。學生獨立完成。然后教師檢查、評價、反饋。指出:對于直線方程的一般式,一般作如下約定:一般按含項、含項、常數項順序排列;項的系數為正;,的系數和常數項一般不出現分數;無特加要時,求直線方程的結果寫

6、成一般式。例2的教學 把直線的一般式方程化成斜截式,求出直線的斜率以及它在軸與軸上的截距,并畫出圖形。完成兩個簡單的變式和課后練習:p100 .T2使學生體會直線方程的一般式化為斜截式,和已知直線方程的一般式求直線的斜率和截距的方法。體會方程的思想和數形結合的思想。 先由學生思考解答,教師板書。然后教師引導學生歸納出由直線方程的一般式,求直線的斜率和截距的方法:把一般式轉化為斜截式可求出直線的斜率的和直線在軸上的截距。求直線與軸的截距,即求直線與軸交點的橫坐標,為此可在方程中令=0,解出值,即為與直線與軸的截距。 在直角坐標系中畫直線時,通常找出直線下兩個坐標軸的交點。補充練習:已知ABC的頂

7、點B(3,1),C(1,6), 直線AB 方程為x-2y-1=0,直線l平行于AB,且分別交AC,BC于點E,F,EFC 的面積是ABC的面積的1/4,求直線l的方程。體會坐標法的應用和數形結合的妙處。同時再一次熟練了一般式求斜率的方法生思考解答,教師簡單板書。 已知直線l1,l2 的方程分別是y=k1x+b1和y=k2x+b2,那么l1l2的條件是什么? 如果問題改為: 已知直線l1,l2 的方程分別是A1x+B1y+C1=0(A1,B1不同時為0)和A2x+B2y+C2=0 (A2,B2不同時為0),那么l1l2的條件是什么?供學生拓展升華用,充分體現了一般式與特殊式的互化和分類討論的思想。學生小組討論合作學習,教師巡視。視時間關系或讓小組派代表回答或讓學生課后完成課本p101B組第4題。二元一次方程的每一個解與坐標平面中點的有什么關系?直線與二元一次方程的解之間有什么關系?進一步理解方程與直線的關系,體會坐標法的思想。 學生閱讀教材第105頁,從中獲得對問題的理解。問 題設計意圖師生活動課堂小結使學生對直線方程的理解有一個整體的認識。 (1)請學生寫出直線方程常見的幾種形式,并說明它們之間的關系比較各種直線方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論