版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、基本不等式及其應(yīng)用教案教學(xué)目的(1)使學(xué)生掌握基本不等式a2b22ab(a、bR,當(dāng)且僅當(dāng)a=b時取“=”號)和a3b3c33abc(a、b、cR+,當(dāng)且僅當(dāng)a=b=c時取“=”號)及其推論,并能應(yīng)用它們證明一些不等式(2)通過對定理及其推論的證明與應(yīng)用,培養(yǎng)學(xué)生運(yùn)用綜合法進(jìn)行推理的能力教學(xué)過程一、引入新課師:上節(jié)課我們學(xué)過證明不等式的哪一種方法?它的理論依據(jù)是什么?生:求差比較法,即師:由于不等式復(fù)雜多樣,僅有比較法是不夠的我們還需要學(xué)習(xí)一些有關(guān)不等式的定理及證明不等式的方法如果a、bR,那么(ab)2屬于什么數(shù)集?為什么?生:當(dāng)ab時,(ab)20,當(dāng)a=b時,(ab)2=0,所以(ab)
2、20即(ab)2R+0師:下面我們根據(jù)(ab)2R+0這一性質(zhì),來推導(dǎo)一些重要的不等式,同時學(xué)習(xí)一些證明不等式的方法二、推導(dǎo)公式1奠基師:如果a、bR,那么有(ab)20把左邊展開,得a22abb20,a2b22ab式表明兩個實數(shù)的平方和不小于它們的積的2倍這就是課本中介紹的定理1,它是一個很重要的絕對不等式,對任何兩實數(shù)a、b都成立由于取“=”號這種特殊情況,在以后有廣泛的應(yīng)用,因此通常要指出“=”號成立的充要條件式中取等號的充要條件是什么呢?師:充要條件通常用“當(dāng)且僅當(dāng)”來表達(dá)“當(dāng)”表示條件是充分的,“僅當(dāng)”表示條件是必要的所以式可表述為:如果a、bR,那么a2b22ab(當(dāng)且僅當(dāng)a=b時
3、取“=”號)以公式為基礎(chǔ),運(yùn)用不等式的性質(zhì)推導(dǎo)公式,這種由已知推出未知(或要求證的不等式)的證明方法通常叫做綜合法以公式為基礎(chǔ),用綜合法可以推出更多的不等式現(xiàn)在讓我們共同來探索2探索師:公式反映了兩個實數(shù)平方和的性質(zhì),下面我們研究兩個以上的實數(shù)的平方和,探索可能得到的結(jié)果先考查三個實數(shù)設(shè)a、b、cR,依次對其中的兩個運(yùn)用公式,有a2b22ab;b2c22bc;c2a22ca把以上三式疊加,得a2b2c2abbcca(當(dāng)且僅當(dāng)a=b=c時取“=”號)以此類推:如果aiR,i=1,2,n,那么有(當(dāng)且僅當(dāng)a1=a2=an時取“=”號)式是式的一種推廣式,式就是式中n=2時的特殊情況和式不必當(dāng)作公式
4、去記,但從它們的推導(dǎo)過程中可以學(xué)到一種處理兩項以上的和式問題的數(shù)學(xué)思想與方法迭代與疊加3再探索師:考察兩個以上實數(shù)的更高次冪的和,又能得到什么有趣的結(jié)果呢?先考查兩個實數(shù)的立方和由于a3b3=(ab)(a2abb2),啟示我們把式變成a2abb2ab,兩邊同乘以ab,為了得到同向不等式,這里要求a、bR+,得到a3b3a2bab2考查三個正實數(shù)的立方和又具有什么性質(zhì)呢?生:由式的推導(dǎo)方法,再增加一個正實數(shù)c,對b、c,c、a迭代式,得到b3c3b2cbc2,c3a3c2aca2三式疊加,并應(yīng)用公式,得2(a3b3c3)a(b2c2)b(c2a2)c(a2b2)a·2bcb·
5、2cac·2ab=6abca3b3c33abc(當(dāng)且僅當(dāng)a=b=c時取“=”號)師:這是課本中的不等式定理2,即三個正實數(shù)的立方和不小于它們的積的3倍同學(xué)們可能想到n個正實數(shù)的立方和會有什么結(jié)果,進(jìn)一步還會想到4個正數(shù)的4次方的和會有什么結(jié)果,直至n個正數(shù)的n次方的和會有什么結(jié)果這些問題留給同學(xué)們課外去研究4推論師:直接應(yīng)用公式和可以得到兩個重要的不等式(當(dāng)且僅當(dāng)a=b時取“=”號)這就是課本中定理1的推論(當(dāng)且僅當(dāng)a=b=c時取“=”號)這就是課本中定理2的推論當(dāng)aiR+(i=1,2,n)時,有下面的推廣公式(在中學(xué)不講它的證明)(當(dāng)且僅當(dāng)a1=a2=an時取“=”號)何平均數(shù)式表
6、明:n個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這是一個著名的平均數(shù)不等式定理現(xiàn)在只要求同學(xué)掌握n=2、3時的兩個公式,即和三、小結(jié)(1)我們從公式出發(fā),運(yùn)用綜合法,得到許多不等式公式,其中要求同學(xué)熟練掌握的是公式、它們之間的關(guān)系可圖示如下:(2)上述公式的證法不止綜合法一種比如公式和,在課本上是用比較法證明的又如公式也可以由推出;用還可以推出;由、也可以推出、但是不論哪種推導(dǎo)系統(tǒng),其理論基礎(chǔ)都是實數(shù)的平方是非負(fù)數(shù)四個公式中,、是基礎(chǔ),最重要它們還可以用幾何法或三角法證明幾何法:構(gòu)造直角三角形ABC,使C=90°,BC=a,AC=b(a、bR+),則a2b2=c2表示以斜邊c為邊的正方
7、形的面積而如上左圖所示,顯然有(當(dāng)且僅當(dāng)a=b時取“=”號,這時RtABC等腰,如上右圖)這個圖是我國古代數(shù)學(xué)家趙爽證明勾股定理時所用過的“勾股方圓圖”,同學(xué)們在初中已經(jīng)見過三角法:在RtABC中,令C=90°, AB=c, BC=a,AC=b,則2ab=2·c sin A· c sin B=2c2sinAcos A=c2·sin2Ac2=a2b2 (sin2A1)(當(dāng)且僅當(dāng)sin2A=1,A=45°,即 a=b時取“=”號)三、應(yīng)用公式練習(xí)1判斷正誤:下列問題的解法對嗎?為什么?如果不對請予以改正a、bR+若tg、ctgR+解法就對了這時需令是第一、三象限的角改條件使a、bR+;改變證法a2abb22abab=3ab師:解題時,要根據(jù)題目的條件選用公式,特別注意公式中字母應(yīng)滿足的條件只有公式、對任何實數(shù)都成立,公式、都要求字母是正實數(shù)(事實上對非負(fù)實數(shù)也成立)2填空:(1)當(dāng)a_時,anan_;(3)當(dāng)x_時,lg2x1_;(5)tg2ctg2_;(6)sinxcosx_;師:從上述解題中,我們可以看到:(1)對公式中的字母應(yīng)作廣義的理解,可以代表數(shù),也可以代表式子
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年黑龍江農(nóng)業(yè)工程職業(yè)學(xué)院單招職業(yè)技能考試備考試題含詳細(xì)答案解析
- 2026年武漢理工大學(xué)附屬小學(xué)教師招聘6人參考考試試題及答案解析
- 2026年黑龍江三江美術(shù)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試備考題庫及答案詳細(xì)解析
- 2026年天津工藝美術(shù)職業(yè)學(xué)院單招綜合素質(zhì)考試參考題庫含詳細(xì)答案解析
- 2026年烏蘭察布職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試模擬試題及答案詳細(xì)解析
- 2026年江西建設(shè)職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試參考題庫含詳細(xì)答案解析
- 2026年廣東水利電力職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試備考題庫及答案詳細(xì)解析
- 2023河北石家莊深澤縣人力資源和社會保障局“三支一扶”志愿者中專項招聘事業(yè)單位工作人員1人參考考試試題及答案解析
- 2026年四川財經(jīng)職業(yè)學(xué)院單招綜合素質(zhì)考試參考題庫含詳細(xì)答案解析
- 2026年河北外國語學(xué)院單招職業(yè)技能考試模擬試題含詳細(xì)答案解析
- (2025)事業(yè)單位考試(面試)試題與答案
- CNAS-GC25-2023 服務(wù)認(rèn)證機(jī)構(gòu)認(rèn)證業(yè)務(wù)范圍及能力管理實施指南
- 入伍智力測試題及答案
- 竣工驗收方案模板
- 企業(yè)安全生產(chǎn)內(nèi)業(yè)資料全套范本
- 安全生產(chǎn)標(biāo)準(zhǔn)化與安全文化建設(shè)的關(guān)系
- DL-T5054-2016火力發(fā)電廠汽水管道設(shè)計規(guī)范
- 耳部刮痧治療
- 神經(jīng)外科介入神經(jīng)放射治療技術(shù)操作規(guī)范2023版
- 多模態(tài)數(shù)據(jù)的聯(lián)合增強(qiáng)技術(shù)
- 濱海事業(yè)單位招聘2023年考試真題及答案解析1
評論
0/150
提交評論