版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、/1、圖像的讀取和顯示/2、圖像的點(diǎn)運(yùn)算/4、空間域圖像增強(qiáng)/5、頻率域圖像增強(qiáng)/6、彩色圖像處理/7、形態(tài)學(xué)圖像處理/8、圖像分割/9、特征提取/3、圖像的幾何變換/1、圖像的讀取和顯示一、圖像的讀取一、圖像的讀取A=imread(FILENAME,FMT)FILENAME 指定圖像文件的完整路徑和文件名。如果在work工作目錄下只需提供文件名。FMT為圖像文件的格式對(duì)應(yīng)的標(biāo)準(zhǔn)擴(kuò)展名。I_1=imread(D:10.06.08nirTTC10377.BMP);%讀入圖像二、圖像的寫入二、圖像的寫入imwrite(A,F(xiàn)ILENAME,FMT)FILENAME參數(shù)指定文件名。FMT為保存文件采
2、用的格式。imwrite(I6,nirdilatedisk2TTC10373.bmp);/1、圖像的讀取和顯示三、圖像的顯示三、圖像的顯示imshow(I,low high)I為要顯示的圖像矩陣。low high為指定顯示灰度圖像的灰度范圍。高于high的像素被顯示成白色;低于low的像素被顯示成黑色;介于High和low之間的像素被按比例拉伸后顯示為各種等級(jí)的灰色。figure;imshow(I6);title(The Main Pass Part of TTC10373);figure;%創(chuàng)建一個(gè)新的窗口figure;subplot(m,n,p);imshow(I);Subplot(m,n
3、,p)含義為:打開一個(gè)有m行n列圖像位置的窗口,并將焦點(diǎn)位于第p個(gè)位置上。/1、圖像的讀取和顯示四、圖像的格式轉(zhuǎn)換四、圖像的格式轉(zhuǎn)換im2bw(I,LEVEL);rgb2gray;從RGB圖創(chuàng)建灰度圖,存儲(chǔ)類型不變。im2uint8 將圖像轉(zhuǎn)換成uint8類型閾值法從灰度圖、RGB圖創(chuàng)建二值圖。LEVEL為指定的閾值;(0,1)。im2double 將圖像轉(zhuǎn)換成double類型/2、圖像的點(diǎn)運(yùn)算 灰度直方圖描述了一副圖像的灰度級(jí)統(tǒng)計(jì)信息,主要應(yīng)用于圖像分割和圖像灰度變換等處理過程中。從數(shù)學(xué)角度來(lái)說,圖像直方圖描述圖像各個(gè)灰度級(jí)的統(tǒng)計(jì)特性,它是圖像灰度值的函數(shù),統(tǒng)計(jì)一幅圖像中各個(gè)灰度級(jí)出現(xiàn)的次數(shù)
4、或概率。歸一化直方圖可以直接反映不同灰度級(jí)出現(xiàn)的比率。橫坐標(biāo)為圖像中各個(gè)像素點(diǎn)的灰度級(jí)別,縱坐標(biāo)表示具有各個(gè)灰度級(jí)別的像素在圖像中出現(xiàn)的次數(shù)或概率。imhist(I);%灰度直方圖I=imread(red.bmp);%讀入圖像figure;%打開新窗口M,N=size(I);%計(jì)算圖像大小counts,x=imhist(I,32);%計(jì)算有32個(gè)小區(qū)間的灰度直方圖counts=counts/M/N;%計(jì)算歸一化灰度直方圖各區(qū)間的值stem(x,counts);%繪制歸一化直方圖一、圖像直方圖一、圖像直方圖圖像直方圖歸一化圖像直方圖歸一化/2、圖像的點(diǎn)運(yùn)算二、灰度的線性變換二、灰度的線性變換BA
5、AABfDfDfDFa1時(shí),輸出圖像的對(duì)比度將增大;Fa1時(shí),輸出圖像對(duì)比度將減小。Fa=1且Fb非零時(shí),所有像素的灰度值上移或下移,使整個(gè)圖像更暗或更亮。Fafreq) out(i,j)=0; end endend理想低通function out = imgaussflpf(I,sigma)%imgaussflpf函數(shù) 構(gòu)造高斯頻域低通濾波器M,N = size(I);out = ones(M,N);for i=1:M forj=1:N out(i,j) = exp(-(i-M/2)2+(j-N/2)2)/2/sigma2); endend高斯低通/6、彩色圖像處理色彩模型:RGB模型、CM
6、Y模型、CMYK模型、HIS模型、 HSV模型、YUV模型、YIQ模型。RGB模型國(guó)際照明委員會(huì)(CIE)規(guī)定以藍(lán)(435.8nm)、綠(546.1nm)和紅(700nm)作為主原色。RGB_image=cat(3,PR,PG,PB);%將PR、PG、PB三個(gè)矩陣在第3個(gè)維度上進(jìn)行級(jí)聯(lián),進(jìn)行圖像合成PR=RGB_image(:,:,1);%提取紅色分量PG=RGB_image(:,:,2);%提取綠色分量PB=RGB_image(:,:,3);%提取藍(lán)色分量Matlab中一幅RGB圖像可表示為一個(gè)M*N*3的3維矩陣。其中每一個(gè)彩色像素都在特定空間位置的彩色圖像中對(duì)應(yīng)紅、綠、藍(lán)3個(gè)分量。CMY
7、模型CMY模型是采用(Cyan、Magenta、Yellow)青、品紅、黃色3中基本原色按一定比例合成顏色。由于色彩的顯示是由光線被物體吸收掉一部分之后反射回來(lái)的剩余光線產(chǎn)生,故CMY模型又稱為減色法混色模型。當(dāng)光都被吸收時(shí)成為黑色,都被反射時(shí)為白色。CMY模型主要用于彩色打印機(jī)和復(fù)印機(jī)等。CMYK模型CMY模型在實(shí)際使用中,青、品紅和黃色等比例混合后的黑色并不純,為產(chǎn)生真正的黑色,專門加入第四種顏色黑色。得到CMYK模型。用于四色打印。cmy=imcomplement(rgb);%rgb轉(zhuǎn)成cmyrgb=imcomplement(cmy);cmy轉(zhuǎn)成rgbBGRYMC111YMCBGR111
8、HSI模型HIS模型是從人的視覺系統(tǒng)出發(fā),直接使用顏色三要素色調(diào)模型是從人的視覺系統(tǒng)出發(fā),直接使用顏色三要素色調(diào)(Hue)、飽和度()、飽和度(Saturation)和亮度()和亮度(Intensity)來(lái)描述)來(lái)描述顏色。顏色。亮度指人眼感覺光的明暗程度。光的能量越大,亮度越大。色調(diào)由物體反射光線中占優(yōu)勢(shì)的波長(zhǎng)決定。反映顏色的本質(zhì)。飽和度指顏色的深淺和濃淡程度,飽和度越高,顏色越深。HIS色彩空間比色彩空間比RGB彩色空間更符合人的視覺特性。亮度和色彩色空間更符合人的視覺特性。亮度和色度具有可分離特性,使得圖像處理和機(jī)器視覺中大量灰度處度具有可分離特性,使得圖像處理和機(jī)器視覺中大量灰度處理算
9、法都可在理算法都可在HIS彩色空間中方便使用。彩色空間中方便使用。GBGBH,360,2/1221arccosBGGRGRBRGR),min()(31BGRBGRS)(31BGRI色調(diào)色調(diào)強(qiáng)度強(qiáng)度飽和度飽和度其中/7、形態(tài)學(xué)圖像處理一、二值圖像腐蝕一、二值圖像腐蝕I2=imerode(I,SE);SE=strel(shape,parameters);I為原始圖像,可以是二值或者灰度圖像。shape指定了結(jié)構(gòu)元素的形狀。parameters是和輸入shape有關(guān)的參數(shù)。合法取值合法取值功能描述功能描述arbitrary或?yàn)榭杖我庾远x結(jié)構(gòu)元素disk圓形結(jié)構(gòu)元素square正方形結(jié)構(gòu)元素rect
10、angle矩形結(jié)構(gòu)元素line線性結(jié)構(gòu)元素pair包含2個(gè)點(diǎn)的結(jié)構(gòu)元素diamond菱形的結(jié)構(gòu)元素octagon8角形的結(jié)構(gòu)元素/7、形態(tài)學(xué)圖像處理二、二值圖像膨脹二、二值圖像膨脹I2=imdilate(I,SE);SE=strel(shape,parameters);I為原始圖像,可以是二值或者灰度圖像。shape指定了結(jié)構(gòu)元素的形狀。parameters是和輸入shape有關(guān)的參數(shù)。原圖像腐蝕后膨脹后/7、形態(tài)學(xué)圖像處理三、其他二值圖像運(yùn)算三、其他二值圖像運(yùn)算SE=strel(shape,parameters);I2=imopen(I,SE);%開運(yùn)算I3=imclose(I,SE);%閉
11、運(yùn)算Ihm=bwhitmiss(I,SE1,SE2);%擊中擊不中變換四、連通分量提取四、連通分量提取L num=bwlabel(Ibw,conn);Ibw為一幅輸入二值圖像。conn為可選參數(shù),指明提取連通分量是4連通還是8連通。默認(rèn)為8。L為連通分量標(biāo)注圖像。num為二值圖像Ibw中連通分量個(gè)數(shù)。/7、形態(tài)學(xué)圖像處理五、五、bwmorph函數(shù)函數(shù)Iout=bwmorph(I,operation,n)合法取值功能描述bridge橋接有單個(gè)像素縫隙分割的前景像素clean清楚孤立的前景像素diag圍繞對(duì)角線相連的前景像素進(jìn)行填充fill填充單個(gè)像素的孔洞hbreak去掉前景中的H形連接majo
12、rity如果點(diǎn)P的8領(lǐng)域中一半以上像素為前景像素,則P為前景像素,否則為背景。remove去除內(nèi)部像素(無(wú)背景像素相鄰的前景)shrink將物體收縮為一個(gè)點(diǎn)或者帶洞的環(huán)形skel骨骼化圖像spur去除“毛刺”thicken粗化物體thin將物體細(xì)化至最低限度相連的線形/7、形態(tài)學(xué)圖像處理六、頂帽變換六、頂帽變換解決非均勻光照問題。頂帽變換定義為圖像f與圖像f的開運(yùn)算之差。a=imread(red.bmp);I=rgb2gray(a);figure,surf(double(I(1:8:end,1:8:end),zlim(0 255),colormapgray;%顯示圖像I的三維可視化效果bg=i
13、mopen(I,strel(disk,15);%開運(yùn)算Itophat=imsubtract(I,bg);%頂帽變換figure,imshow(Itophat);figure,surf(double(Itophat(1:8:end,1:8:end),zlim(0 255);I2=imadjust(Itophat);figure,imshow(I2);sffh原圖像三維可視化效果頂帽變換后的三維可視化效果頂帽變換后圖像對(duì)比度拉伸后效果/8、圖像分割一、圖像分割概述一、圖像分割概述 圖像分割一般采用的方法有邊緣檢測(cè)(edge detection)、邊界跟蹤(edge tracing)、區(qū)域生長(zhǎng)(re
14、gion growing)、區(qū)域分離和聚合等。 圖像分割算法一般基于圖像灰度值的不連續(xù)性或其相似性。 不連續(xù)性是基于圖像灰度的不連續(xù)變化分割圖像,如針對(duì)圖像的邊緣有邊緣檢測(cè)、邊界跟蹤等算法。 相似性是依據(jù)事先制定的準(zhǔn)則將圖像分割為相似的區(qū)域,如閾值分割、區(qū)域生長(zhǎng)等。二、邊緣檢測(cè)二、邊緣檢測(cè) 圖像的邊緣點(diǎn)是指圖像中周圍像素灰度有階躍變化或屋頂變化的那些像素點(diǎn),即灰度值導(dǎo)數(shù)較大或極大的地方。 邊緣檢測(cè)可以大幅度的減少數(shù)據(jù)量,并且剔除不相關(guān)信息,保留圖像重要的結(jié)構(gòu)屬性。 邊緣檢測(cè)基本步驟:平滑濾波、銳化濾波、邊緣判定、邊緣連接。邊緣檢測(cè)算法邊緣檢測(cè)算法:基于一階導(dǎo)數(shù):Roberts算子、Sobel算
15、子、Prewitt算子基于二階導(dǎo)數(shù):高斯-拉普拉斯邊緣檢測(cè)算子Canny邊緣檢測(cè)算法Matlab實(shí)現(xiàn)實(shí)現(xiàn)1)、基于梯度算子的邊緣檢測(cè)BW=edge(I,type,thresh,direction,nothinning)type合法取值梯度算子sobelsobel算子prewittprewitt算子rebertsrobert算子thresh是敏感度閾值參數(shù),任何灰度值低于此閾值的邊緣將不會(huì)被檢測(cè)到。默認(rèn)值為空矩陣,此時(shí)算法自動(dòng)計(jì)算閾值。direction指定了我們感興趣的邊緣方向,edge函數(shù)將只檢測(cè)direction中指定方向的邊緣,其合法值如下:direction合法值合法值邊緣方向邊緣方向
16、horizontal水平方向水平方向vertical豎直方向豎直方向both所有方向所有方向可選參數(shù)nothinning,指定時(shí)可以通過跳過邊緣細(xì)化算法來(lái)加快算法運(yùn)行的速度。默認(rèn)是thinning,即進(jìn)行邊緣細(xì)化。2)、基于高斯-拉普拉斯算子的邊緣檢測(cè)BW=edge(I,log,thresh,sigma)sigma指定生成高斯濾波器所使用的標(biāo)準(zhǔn)差。默認(rèn)時(shí),標(biāo)準(zhǔn)差為2。濾鏡大小n*n,n的計(jì)算方法為:n=ceil(sigma*3)*2+1。3)、基于Canny算子的邊緣檢測(cè)BW=edge(I,canny,thresh,sigma)thresh是敏感度閾值參數(shù),默認(rèn)值為空矩陣。此處為一列向量,為算
17、法指定閾值的上下限。第一個(gè)元素為閾值下限,第二個(gè)元素為閾值上限。如果只指定一個(gè)閾值元素,則默認(rèn)此元素為閾值上限,其0.4倍的值作為閾值下限。如閾值參數(shù)沒有指定,則算法自行確定敏感度閾值上下限。b1=imread(nir.bmp);h58=fspecial(gaussian,5,0.8);b=imfilter(b1,h58);bw1=edge(b,sobel);%sobel算子bw2=edge(b,prewitt);%prewitt算子bw3=edge(b,roberts);%roberts算子bw4=edge(b,log); %log算子bw5=edge(b,canny);%canny算子fi
18、gure;imshow(bw1);imwrite(bw1,nirbwsobel.bmp);figure;imshow(bw2);imwrite(bw2,nirbwprewitt.bmp);figure;imshow(bw3);imwrite(bw3,nirbwroberts.bmp);figure;imshow(bw4);imwrite(bw4,nirbwlog.bmp);figure;imshow(bw5);imwrite(bw5,nirbwcanny.bmp);Sobel算子roberts算子prewitt算子log算子canny算子分析分析1、邊緣定位精度方面: Roberts算子和Lo
19、g算子定位精度較高。Roberts算子簡(jiǎn)單直觀,Log算子利用二階導(dǎo)數(shù)零交叉特性檢測(cè)邊緣。但Log算子只能獲得邊緣位置信息,不能得到邊緣方向信息。2、邊緣方向的敏感性: Sobel算子、Prewitt算子檢測(cè)斜向階躍邊緣效果較好,Roberts算子檢測(cè)水平和垂直邊緣效果較好。Log算子不具有邊緣方向檢測(cè)功能。Sobel算子能提供最精確的邊緣方向估計(jì)。3、去噪能力: Roberts算子和Log算子雖然定位精度高,但受噪聲影響大。 Sobel算子和Prewitt算子模板相對(duì)較大因而去噪能力較強(qiáng),具有平滑作用,能濾除一些噪聲,去掉一部分偽邊緣,但同時(shí)也平滑了真正的邊緣,降低了其邊緣定位精度。總體來(lái)講
20、,Canny算子邊緣定位精確性和抗噪聲能力效果較好,是一個(gè)折中方案。 三、三、Hough變換直線檢測(cè)變換直線檢測(cè)/8、圖像分割步驟:步驟:1. 利用hough()函數(shù)執(zhí)行霍夫變換,得到霍夫矩陣;2. 利用houghpeaks()函數(shù)在霍夫矩陣中尋找峰值點(diǎn);3. 利用houghlines()函數(shù)在之前兩步結(jié)果的基礎(chǔ)上得到原二值圖像中的直線信息。H,theta,rho=hough(BW,param1,val1,param2,val2)1、霍夫變換(針對(duì)二值圖像)Param合法值含義ThetaResolutionHough矩陣中a軸方向上單位區(qū)間長(zhǎng)度,0,90RhoResolutionHough矩陣
21、中p軸方向上單位區(qū)間長(zhǎng)度,0,norm(size(BW)2、尋找峰值houghpeakspeaks=houghpeaks(H,numpeaks,param1,val1,param2,val2)Param合法值含義Threshold峰值的閾值,默認(rèn)為0.5*max(H(:)NHoodSize在每次檢測(cè)出一個(gè)峰值后,NHoodSize指出了在該峰值周圍需要清零的鄰閾信息。以向量M N形式給出,其中M、N均為正奇數(shù)。默認(rèn)為大于等于size(H)/50的最小奇數(shù)peaks是一個(gè)Q*2的矩陣,每行的兩個(gè)元素分別為某一峰值點(diǎn)在Hough矩陣中的行、列索引,Q為找到的峰值點(diǎn)的數(shù)目。3、提取直線段houghl
22、ineslines=houghlines(BW,theta,rho,peaks,param1,val1,param2,val2)Param合法值含義FillGap線段合并的閾值:如果對(duì)應(yīng)于Hough矩陣某一個(gè)單元格(相同的a和p)的2個(gè)線段之間的距離小于FillGap,則合并為1個(gè)直線段。默認(rèn)值為20MinLength檢測(cè)的直線段的最小長(zhǎng)度閾值:如果檢測(cè)出的直線線段長(zhǎng)度大于MinLength,則保留,否則丟棄。默認(rèn)值為40。域含義point1直線段的端點(diǎn)1point2直線段的端點(diǎn)2theta對(duì)應(yīng)在霍夫矩陣中的arho對(duì)應(yīng)在霍夫矩陣中的p返回值返回值lines的結(jié)構(gòu)的結(jié)構(gòu)I1=imread(00
23、4.jpg);I=rgb2gray(I1);%旋轉(zhuǎn)圖像并尋找邊緣rotI=imrotate(I,33,crop);BW=edge(rotI,canny);%執(zhí)行Hough變換并顯示Hough矩陣H,T,R=hough(BW);figure;imshow(H,XData,T,YData,R,InitialMagnification,fit);xlabel(theta),ylabel(rho);axis on,axis normal,hold on;%在Hough矩陣中尋找前5個(gè)大于Hough矩陣中最大值0.3倍的峰值P=houghpeaks(H,5,threshold,ceil(0.3*max(
24、H(:);x=T(P(:,2);y=R(P(:,1);%由行、列索引轉(zhuǎn)換成實(shí)際坐標(biāo)plot(x,y,s,color,white);%在Hough矩陣圖像中標(biāo)出峰值位置%找出并繪制直線lines=houghlines(BW,T,R,P,FillGap,5,MinLength,7);%合并距離小于5的線段,丟棄所有長(zhǎng)度小于7的直線段figure,imshow(rotI),hold onmax_len=0;for k = 1:length(lines)%依次標(biāo)出各條直線段 xy=lines(k).point1;lines(k).point2; plot(xy(:,1),xy(:,2),x,LineWidth,2,Color,green); %繪制線段端點(diǎn) plot(xy(1,1),xy(1,2),x,LineWidth,2,Color,yellow); plot(xy(2,1),xy(2,2),x,LineWidth,2,Color,red); %確定最長(zhǎng)的線段 len=norm(lines(k).point1-lines(k).point2); if(lenmax_len) max_len=len; xy_long=xy; ende
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年貴州應(yīng)用技術(shù)職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)及參考答案詳解1套
- 2026年福建生物工程職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)及答案詳解一套
- 2026年浙江建設(shè)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)及答案詳解1套
- 2026年青海民族大學(xué)單招職業(yè)技能測(cè)試題庫(kù)及完整答案詳解1套
- 2026年江蘇工程職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)及參考答案詳解一套
- 2026年無(wú)錫城市職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)參考答案詳解
- 2026年滁州城市職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)帶答案詳解
- 2026年湖南省湘潭市單招職業(yè)適應(yīng)性測(cè)試題庫(kù)含答案詳解
- 2026年四川藝術(shù)職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)附答案詳解
- 2026年宣城職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性考試題庫(kù)含答案詳解
- 1-視頻交換矩陣
- 收養(yǎng)政策知識(shí)培訓(xùn)內(nèi)容課件
- 2025-2026學(xué)年統(tǒng)編版一年級(jí)上冊(cè)道德與法治教學(xué)計(jì)劃
- 《機(jī)器學(xué)習(xí)》課件-第6章 強(qiáng)化學(xué)習(xí)
- 早產(chǎn)合并新生兒呼吸窘迫綜合征護(hù)理查房
- 警校偵查專業(yè)畢業(yè)論文
- 生態(tài)教育心理干預(yù)-洞察及研究
- 票務(wù)提成管理辦法
- 肺炎克雷伯菌肺炎護(hù)理查房
- 人教版(2024)七年級(jí)上冊(cè)英語(yǔ)Unit1-7各單元語(yǔ)法專項(xiàng)練習(xí)題(含答案)
- 2025版小學(xué)語(yǔ)文新課程標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論