2022屆河南省頂尖名校高三下第一次測試數(shù)學試題含解析_第1頁
2022屆河南省頂尖名校高三下第一次測試數(shù)學試題含解析_第2頁
2022屆河南省頂尖名校高三下第一次測試數(shù)學試題含解析_第3頁
2022屆河南省頂尖名校高三下第一次測試數(shù)學試題含解析_第4頁
2022屆河南省頂尖名校高三下第一次測試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務必將自己的姓名、準考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目

2、要求的。1從集合中隨機選取一個數(shù)記為,從集合中隨機選取一個數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為( )ABCD2設(shè)分別是雙線的左、右焦點,為坐標原點,以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為( )ABCD3雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為( )ABCD4九章算術(shù)中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為( )A4B8CD5 “”是“”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件6已知為實數(shù)集,則(

3、 )ABCD7如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是( )ABCD88已知,若,則實數(shù)的值是()A-1B7C1D1或79已知的展開式中的常數(shù)項為8,則實數(shù)( )A2B-2C-3D310設(shè),則復數(shù)的模等于( )ABCD11函數(shù)(且)的圖象可能為( )ABCD12某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是( )ABC16D32二、填空題:本題共4小題,每小題5分,共20分。13假設(shè)10公里長跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優(yōu)秀的概率為

4、_14已知函數(shù)為上的奇函數(shù),滿足.則不等式的解集為_.15集合,若是平面上正八邊形的頂點所構(gòu)成的集合,則下列說法正確的為_的值可以為2;的值可以為;的值可以為;16已知圓柱的兩個底面的圓周在同一個球的球面上,圓柱的高和球半徑均為2,則該圓柱的底面半徑為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當?shù)拿娣e取得最大值時,求AD的長.18(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的最大值為,且,求的最小值.19(12分)圖1是由矩形ADEB,RtABC和菱形

5、BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,F(xiàn)BC=60,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC平面BCGE;(2)求圖2中的二面角BCGA的大小.20(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點 (1)求證:平面; (2)求二面角的正切值21(12分)已知函數(shù).(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.22(10分)選修4-5:不等式選講設(shè)函數(shù)f(x)=|x-a|,a0(1) 證明:f(x)+f(-1x)2;(2)若不等式f(x)+

6、f(2x)12的解集非空,求a的取值范圍參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.2B【解析】由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因為四邊形為菱形,所以為等邊三角形,兩漸近線

7、的斜率分別為和.故選:B【點睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.3B【解析】首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設(shè)左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.4B【解析】由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長為

8、2且與底面垂直,因為直三棱柱可以復原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計算,屬于基礎(chǔ)題.5B【解析】或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎(chǔ)題.6C【解析】求出集合,由此能求出【詳解】為實數(shù)集,或,故選:【點睛】本題考查交集、補集的求法,考查交集、補集的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題7A【解析】由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計

9、算體積【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,故選:A【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵8C【解析】根據(jù)平面向量數(shù)量積的坐標運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標運算,代入化簡可得.解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標運算,屬于基礎(chǔ)題.9A【解析】先求的展開式,再分類分析中用哪一項與相乘,將所有結(jié)果為常數(shù)的相加,即為展開式的常數(shù)項,從而求出的值.【詳解】展開式的通項為,當取2時,常數(shù)項為,當取時,常數(shù)項為由題知,則.故選:A.【點睛】本題考查了兩個二項式乘積的展開式

10、中的系數(shù)問題,其中對所取的項要進行分類討論,屬于基礎(chǔ)題.10C【解析】利用復數(shù)的除法運算法則進行化簡,再由復數(shù)模的定義求解即可.【詳解】因為,所以,由復數(shù)模的定義知,.故選:C【點睛】本題考查復數(shù)的除法運算法則和復數(shù)的模;考查運算求解能力;屬于基礎(chǔ)題.11D【解析】因為,故函數(shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點:1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.12A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.二、填空題:本題共4小題,每小題5分,共20分。13【解析】分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【詳解】剛

11、好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:【點睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎(chǔ)題.14【解析】構(gòu)造函數(shù),利用導數(shù)判斷出函數(shù)的單調(diào)性,再將所求不等式變形為,利用函數(shù)的單調(diào)性即可得解.【詳解】設(shè),則,設(shè),則.當時,此時函數(shù)單調(diào)遞減;當時,此時函數(shù)單調(diào)遞增.所以,函數(shù)在處取得極小值,也是最小值,即,即,所以,函數(shù)在上為增函數(shù),函數(shù)為上的奇函數(shù),則,則不等式等價于,又,解得.因此,不等式的解集為.故答案為:.【點睛】本題主要考

12、查不等式的求解,構(gòu)造函數(shù),求函數(shù)的導數(shù),利用導數(shù)和函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵綜合性較強15【解析】根據(jù)對稱性,只需研究第一象限的情況,計算:,得到,得到答案.【詳解】如圖所示:根據(jù)對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構(gòu)成的集合,故所在的直線的傾斜角為,故:,解得,此時,此時.故答案為:.【點睛】本題考查了根據(jù)集合的交集求參數(shù),意在考查學生的計算能力和轉(zhuǎn)化能力,利用對稱性是解題的關(guān)鍵.16【解析】由圓柱外接球的性質(zhì),即可求得結(jié)果.【詳解】解:由于圓柱的高和球半徑均為2,,則球心到圓柱底面的距離為1,設(shè)圓柱底面半徑為,由已知有,即圓柱的底面半

13、徑為.故答案為:.【點睛】本題考查由圓柱的外接球的性質(zhì)求圓柱底面半徑,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2).【解析】(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,而,故當時,的面積取得最大值,此時,在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結(jié)合,得,因為,所以,由,得.(2)在中,由余弦定得,因為,所以,當且僅當時,的面積取得最大值,此時.在中,由余弦定理得.即.【點睛】本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學生的計算能力,是一道容易題.18(1)(2)【解析】(1)化簡得到,分類

14、解不等式得到答案.(2)的最大值,利用均值不等式計算得到答案.【詳解】(1)因為,故或或解得或,故不等式的解集為.(2)畫出函數(shù)圖像,根據(jù)圖像可知的最大值.因為,所以,當且僅當時,等號成立,故的最小值是3.【點睛】本題考查了解不等式,均值不等式求最值,意在考查學生的計算能力和轉(zhuǎn)化能力.19 (1)見詳解;(2) .【解析】(1)因為折紙和粘合不改變矩形,和菱形內(nèi)部的夾角,所以,依然成立,又因和粘在一起,所以得證.因為是平面垂線,所以易證.(2)在圖中找到對應的平面角,再求此平面角即可.于是考慮關(guān)于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,又因為和粘在一起.,A,C

15、,G,D四點共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過B作延長線于H,連結(jié)AH,因為AB平面BCGE,所以而又,故平面,所以.又因為所以是二面角的平面角,而在中,又因為故,所以.而在中,,即二面角的度數(shù)為.【點睛】很新穎的立體幾何考題首先是多面體粘合問題,考查考生在粘合過程中哪些量是不變的再者粘合后的多面體不是直棱柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法最后將求二面角轉(zhuǎn)化為求二面角的平面角問題考查考生的空間想象能力20 (1)見證明;(2) 【解析】(1)取PD中點G,可證EFGA是平行四邊形,從而, 得證線面平行;(2)取AD中點O,連結(jié)PO,可得

16、面,連交于,可證是二面角的平面角,再在中求解即得【詳解】(1)證明:取PD中點G,連結(jié)為的中位線,且, 又且,且,EFGA是平行四邊形,則, 又面,面, 面; (2)解:取AD中點O,連結(jié)PO, 面面,為正三角形,面,且, 連交于,可得,則,即 連,又,可得平面,則, 即是二面角的平面角, 在中,即二面角的正切值為【點睛】本題考查線面平行證明,考查求二面角求二面角的步驟是一作二證三計算即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計算21(1)(2)【解析】(1)當時,將函數(shù)寫成分段函數(shù),即可求得不等式的解集.(2)根據(jù)原命題是假命題,這命題的否定為真命題,即“,”為真命題,只需滿足即可.【詳解】解:(1)當時,由,得.故不等式的解集為.(2)因為“,”為假命題,所以“,”為真命題,所以.因為,所以,則,所以,即,解得,即的取值范圍為.【點睛】本題考查絕對值不等式的解法,以及絕對值三角不等式,屬于基礎(chǔ)題.22 (1)見解析.(1) (-1,0).【解析】試題分析:(1)直接計算f(x)+f(-1x)=|x-a|+|1x+a|,由絕對值不等式的性質(zhì)及基本不等式證之即可;(1)f(x)+f(2x)=|x-a|+|2x-a|,分區(qū)間討論去絕對值符號分別解不等式即可.試題解析: (

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論