2022屆河南省封丘縣高考數(shù)學考前最后一卷預測卷含解析_第1頁
2022屆河南省封丘縣高考數(shù)學考前最后一卷預測卷含解析_第2頁
2022屆河南省封丘縣高考數(shù)學考前最后一卷預測卷含解析_第3頁
2022屆河南省封丘縣高考數(shù)學考前最后一卷預測卷含解析_第4頁
2022屆河南省封丘縣高考數(shù)學考前最后一卷預測卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),滿足對任意的實數(shù),都有成立,則實數(shù)的取值范圍為( )ABCD2如圖所示,矩形的對角線相交于點,為的中點,若,則等于( )ABCD3已知是定義在上的奇函數(shù),且當時,若,則的解

2、集是( )ABCD4已知隨機變量服從正態(tài)分布,( )ABCD5過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是( )ABCD6已知是虛數(shù)單位,則復數(shù)( )ABC2D7對于函數(shù),定義滿足的實數(shù)為的不動點,設,其中且,若有且僅有一個不動點,則的取值范圍是( )A或BC或D8在邊長為2的菱形中,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為( )ABCD9復數(shù)滿足為虛數(shù)單位),則的虛部為( )ABCD10已知,則( )ABCD11若函數(shù)f(x)a|2x4|(a0,a1)滿足f(1),則f(x)的單調(diào)遞減區(qū)間是( )A(,2B2,)C2,)D(,212設a,b(0,1)(1,

3、+),則a=b是logab=logba的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13在中, ,則_.14若實數(shù)滿足不等式組,則的最小值是_15圓關于直線的對稱圓的方程為_.16一個四面體的頂點在空間直角坐標系中的坐標分別是,則該四面體的外接球的體積為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知數(shù)列滿足,等差數(shù)列滿足,(1)分別求出,的通項公式;(2)設數(shù)列的前n項和為,數(shù)列的前n項和為證明:18(12分)已知橢圓,上頂點為,離心率為,直線交軸于點,交橢圓于,兩點,直線,分別交軸于

4、點,()求橢圓的方程;()求證:為定值19(12分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.20(12分)已知,不等式恒成立.(1)求證:(2)求證:.21(12分)已知函數(shù).(1)若曲線的切線方程為,求實數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.22(10分)某公司欲投資一新型產(chǎn)品的批量生產(chǎn),預計該產(chǎn)品的每日生產(chǎn)總成本價格)(單位:萬元)是每日產(chǎn)量(單位:噸)的函數(shù):.(1)求當日產(chǎn)量為噸時的邊際成本(即生產(chǎn)過程中一段時間的總成本對該段時間產(chǎn)量的導數(shù));(2)記每日生產(chǎn)平均成本求證:;(3)若財團每日注入資金可按數(shù)列(單位

5、:億元)遞減,連續(xù)注入天,求證:這天的總投入資金大于億元.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實數(shù)的取值范圍是故選:B.【點睛】本題考查利用分段函數(shù)的單調(diào)性求參數(shù),一般要分析每支函數(shù)的單調(diào)性,同時還要考慮分段點處函數(shù)值的大小關系,考查運算求解能力,屬于中等題.2A【解析】由平面向量基本定理,化簡得,所以,即可求解,得到答案【詳解】由平面向量基本定理,化簡,所以,即,故選A【點睛】本

6、題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數(shù)基礎題3B【解析】利用函數(shù)奇偶性可求得在時的解析式和,進而構造出不等式求得結果.【詳解】為定義在上的奇函數(shù),.當時,為奇函數(shù),由得:或;綜上所述:若,則的解集為.故選:.【點睛】本題考查函數(shù)奇偶性的應用,涉及到利用函數(shù)奇偶性求解對稱區(qū)間的解析式;易錯點是忽略奇函數(shù)在處有意義時,的情況.4B【解析】利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎題.5A【解析】過圓外一點,引圓的兩條切線,

7、則經(jīng)過兩切點的直線方程為,故選6A【解析】根據(jù)復數(shù)的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數(shù)的基本運算,屬于基礎題.7C【解析】根據(jù)不動點的定義,利用換底公式分離參數(shù)可得;構造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當時,則在內(nèi)單調(diào)遞增;當時,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個不動點,可得得或,解得或.故選:C【點睛】本題考查了函數(shù)新定義的應用,由導數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構造函數(shù)方法的應用,屬于中檔題.8D【解析】取AC中點N,由題意得即為二面角的平

8、面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.9C【解析】,分子分母同乘以分母的共軛復數(shù)即可.【詳解】由已知,故的虛部為.故選:C.【點睛】本題考查復數(shù)的除法運算,考查學生的基本運算能力,是一道基礎題.10C【解析】利

9、用誘導公式得,再利用倍角公式,即可得答案.【詳解】由可得,.故選:C.【點睛】本題考查誘導公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號.11B【解析】由f(1)=得a2=,a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-,2上單調(diào)遞減,在2,+)上單調(diào)遞增,所以f(x)在(-,2上單調(diào)遞增,在2,+)上單調(diào)遞減,故選B.12A【解析】根據(jù)題意得到充分性,驗證a=2,b=12得出不必要,得到答案.【詳解】a,b0,11,+,當a=b時,logab=logba,充分性;當logab=logba,取a=2,b=12,驗證成

10、立,故不必要.故選:A.【點睛】本題考查了充分不必要條件,意在考查學生的計算能力和推斷能力.二、填空題:本題共4小題,每小題5分,共20分。13【解析】先由題意得:,再利用向量數(shù)量積的幾何意義得,可得結果.【詳解】由知:,則在方向的投影為,由向量數(shù)量積的幾何意義得:,故答案為【點睛】本題考查了投影的應用,考查了數(shù)量積的幾何意義及向量的模的運算,屬于基礎題.14-1【解析】作出可行域,如圖:由得,由圖可知當直線經(jīng)過A點時目標函數(shù)取得最小值,A(1,0)所以-1故答案為-115【解析】求出圓心關于直線的對稱點,即可得解.【詳解】的圓心為,關于對稱點設為,則有: ,解得,所以對稱后的圓心為,故所求圓

11、的方程為.故答案為:【點睛】此題考查求圓關于直線的對稱圓方程,關鍵在于準確求出圓心關于直線的對稱點坐標.16【解析】將四面體補充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補體法,由空間點坐標可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【點睛】本題主要考查了四面體外接球的常用求法:補體法,通過補體得到長方體的外接球從而得解,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17 (1) (2)證明見解析【解析】(1)因為,所以,所以

12、,即,又因為,所以數(shù)列為等差數(shù)列,且公差為1,首項為1,則,即.設的公差為,則,所以(),則(),所以,因此,綜上,(2)設數(shù)列的前n項和為,則兩式相減得,所以, 設則,所以.18();(),證明見解析【解析】()根據(jù)題意列出關于,的方程組,解出,的值,即可得到橢圓的方程;()設點,點,易求直線的方程為:,令得,同理可得,所以,聯(lián)立直線與橢圓方程,利用韋達定理代入上式,化簡即可得到【詳解】()解:由題意可知:,解得,橢圓的方程為:;()證:設點,點,聯(lián)立方程,消去得:,點,直線的方程為:,令得,同理可得,把式代入上式得:,為定值【點睛】本題主要考查直線與橢圓的位置關系、定值問題的求解;關鍵是能

13、夠通過直線與橢圓聯(lián)立得到韋達定理的形式,利用韋達定理化簡三角形面積得到定值;考查計算能力與推理能力,屬于中檔題19()見證明;()【解析】()取的中點為,連結,易證四邊形為平行四邊形,即,由于,為的中點,可得到,從而得到,即可證明平面,從而得到;()易證,兩兩垂直,以,分別為,軸,建立如圖所示的空間直角坐標系,求出平面的一個法向量為,設與平面所成角為,則,即可得到答案【詳解】解:()取的中點為,連結.由是三棱臺得,平面平面,從而.,四邊形為平行四邊形,.,為的中點,.平面平面,且交線為,平面,平面,而平面,.()連結.由是正三角形,且為中點,則.由()知,平面,兩兩垂直.以,分別為,軸,建立如

14、圖所示的空間直角坐標系.設,則,.設平面的一個法向量為.由可得,.令,則,.設與平面所成角為,則.【點睛】本題考查了空間幾何中,面面垂直的性質(zhì),線線垂直的證明,及線面角的求法,考查了學生的邏輯推理能力與計算求解能力,屬于中檔題20(1)證明見解析(2)證明見解析【解析】(1)先根據(jù)絕對值不等式求得的最大值,從而得到,再利用基本不等式進行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進行不等式相加,即可得答案.【詳解】(1),.,.(2),即兩邊開平方得.同理可得,.三式相加,得.【點睛】本題考查絕對值不等式、應用基本不等式證明不等式,考查函數(shù)與方程思

15、想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.21(1);(2)或【解析】(1)根據(jù)解析式求得導函數(shù),設切點坐標為,結合導數(shù)的幾何意義可得方程,構造函數(shù),并求得,由導函數(shù)求得有最小值,進而可知由唯一零點,即可代入求得的值;(2)將解析式代入,結合零點定義化簡并分離參數(shù)得,構造函數(shù),根據(jù)題意可知直線與曲線有兩個交點;求得并令求得極值點,列出表格判斷的單調(diào)性與極值,即可確定與有兩個交點時的取值范圍.【詳解】(1)依題意,設切點為,故,故,則;令,故當時,當時,故當時,函數(shù)有最小值,由于,故有唯一實數(shù)根0,即,則;(2)由,得.所以“在區(qū)間上有兩個零點”等價于“直線與曲線在有兩個交點”;由于.由,解得,.當變化時,與的變化情況如下表所示:30+0極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增.又因為,故當或時,直線與曲線在上有兩個交點,即當或時,函數(shù)在區(qū)間上有兩個零點.【點睛】本題考查了導數(shù)的幾何意義應用,由切線方程求參數(shù)值,構造函數(shù)法求參數(shù)的取值范圍,函數(shù)零點的意義及綜合應用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論