人教版八年級數(shù)學(xué)下冊第18章平行四邊形PPT教學(xué)課件1_第1頁
人教版八年級數(shù)學(xué)下冊第18章平行四邊形PPT教學(xué)課件1_第2頁
人教版八年級數(shù)學(xué)下冊第18章平行四邊形PPT教學(xué)課件1_第3頁
人教版八年級數(shù)學(xué)下冊第18章平行四邊形PPT教學(xué)課件1_第4頁
人教版八年級數(shù)學(xué)下冊第18章平行四邊形PPT教學(xué)課件1_第5頁
已閱讀5頁,還剩147頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、18.1.1 平行四邊形的性質(zhì)第十八章 平行四邊形導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)八年級數(shù)學(xué)下(RJ) 教學(xué)課件第1課時 平行四邊形的邊、角特征學(xué)習(xí)目標(biāo)1.理解并掌握平行四邊形的概念及掌握平行四邊形的定 義和對邊相等、對角相等的兩條性質(zhì).(重點)2.根據(jù)平行四邊形的性質(zhì)進行簡單的計算和證明.(難點) 3.經(jīng)歷“實驗猜想驗證證明”的過程,發(fā)展學(xué)生的 思維水平.導(dǎo)入新課 觀察下圖,平行四邊形在生活中無處不在.情景引入你還能舉出其他的例子嗎?兩組對邊都不平行一組對邊平行,一組對邊不平行兩組對邊分別平行問題1 觀察圖形,說出下列圖形邊的位置有什么特征?問題2 你們還記得我們以前對平行四邊形的定義嗎?兩

2、組對邊分別平行的四邊形叫做平行四邊形.2.平行四邊形用“ ” 表示,如圖,平行四邊形ABCD 記作 ABCD ( 要注意字母順序).1.定義:ABDC歸納總結(jié)語言表述:ADBC,ABDC,四邊形ABCD是平行四邊形.例1 如圖,DCGH AB,DA EF CB,圖中的平行四邊形有多少個?將它們表示出來.DABCHGFE典例精析解:DCGH AB, DA EF CB,根據(jù)平行四邊形的定義可以判定圖中共有9個平行四邊形,即AEKG, ABHG, AEFD, GKFD,K BEKH, CHKF, BEFC, CDGH, ABCD. 用定義判定平行四邊形,即看四邊形兩組對邊是否分別平行.歸納你能從以下

3、圖形中找出平行四邊形嗎?(2)(3)(1)(4)(5)練一練根據(jù)平行四邊形的定義,請畫一個平行四邊形ABCD. DABC平行四邊形的邊、角的特征二ABCD活動1 請用尺子等工具度量你手中平行四邊形的四條邊,并記錄下數(shù)據(jù),你能發(fā)現(xiàn)AB與DC,AD與BC之間的數(shù)量關(guān)系嗎?測得AB=DC,AD=BC.ABCD測得A =C,B =D.活動2 請用量角器等工具度量你手中平行四邊形的四個角,并記錄下數(shù)據(jù),你能發(fā)現(xiàn)A與C,B與 D之間的數(shù)量關(guān)系嗎?猜想 平行四邊形的兩組對邊,兩組對角有什么數(shù)量關(guān)系? 兩組對邊及兩組對角分別相等.怎樣證明這個猜想呢?證明:如圖,連接AC.四邊形ABCD是平行四邊形,ADBC,

4、AB CD,1=2,3=4.又AC是ABC和CDA的公共邊, ABCCDA,AD=BC,AB=CD,ABC=ADC.BAD=1+4,BCD=2+3,BAD=BCD.ABCD1432已知:四邊形ABCD是平行四邊形.求證:AD=BC,AB=CD,BAD=BCD,ABC=ADC.證一證思考 不添加輔助線,你能否直接運用平行四邊形的定義,證明其對角相等?ABCD證明:四邊形ABCD是平行四邊形,ADBC,AB CD,A+B=180,A+D=180,B=D.同理可得A=C.平行四邊形的對邊相等平行四邊形的對角相等平行四邊形的性質(zhì)除了對邊互相平行以外,還有:ABCD歸納總結(jié)動手做一做:剪兩張對邊平行的紙

5、條隨意交叉疊放在一起,重合部分構(gòu)成了一個四邊形,轉(zhuǎn)動其中一張紙條,線段AD和BC的長度有什么關(guān)系?為什么?ABCD解:AD和BC的長度相等.理由如下:由題意知AB/CD,AD/BC,四邊形ABCD是平行四邊形,AD=BC.例2 如圖,在 ABCD中.(1)若A =32。,求其余三個角的度數(shù).ABCD四邊形ABCD是平行四邊形解:且 A =32。(已知), A = C=32。, B= D (平行四邊形的對角相等). 又ADBC(平行四邊形的對邊平行), A + B =180。(兩直線平行,同旁內(nèi)角互補), B= D= 180。- A = 180。- 32。=148。.典例精析(2)連接AC,已知

6、 ABCD的周長等于20 cm,AC=7cm,求ABC的周長.解:四邊形ABCD是平行四邊形(已知), AB=CD,BC=AD(平行四邊形的對邊相等). 又AB+BC+CD+AD=20cm(已知), AB+BC= 10cm. AC=7cm, ABC的周長為AB+BC+AC= 17cm.ABCD【變式題】 (1)在 ABCD中,A:B=2:3,求各角的度數(shù).解: (1)A,B是平行四邊形的兩個鄰角, A+B=180. 又A:B=2:3, 設(shè)A=2x,B=3x, 2x+3x= 180, 解得x= 36. A = C=72, B= D=108. 平行四邊形的鄰角互補(2)若 ABCD的周長為28cm

7、,AB:BC=3:4,求各邊的長度.解: (2)在平行四邊形ABCD中, AB=CD,BC=AD. 又AB+BC+CD+AD=28cm, AB+BC= 14cm. AB:BC=3:4,設(shè)AB=3ycm,BC=4ycm, 3y+4y=14,解得y=2. AB=CD=6cm,BC=AD=8cm. 已知平行四邊形的邊角的比例關(guān)系求其他邊角時,常會用到方程思想,結(jié)合平行四邊形的性質(zhì)列方程.歸納證明:四邊形ABCD是平行四邊形,例3 如圖,在 ABCD中,E,F(xiàn)是對角線AC上的兩點,并且AE=CF,求證: BE=DF. BAE=DCF. ABE CDF. AB=CD,AB CD又AE=CF,BE=DF.

8、ADBCEF1.如圖,在ABCD中. (1)若A=130,則B=_ ,C=_ , D=_. (3)若A+ C= 200,則A=_,B=_. (2)若AB=3,BC=5,則它的周長= _. CDAB501305010080練一練162.如圖,在平行四邊形ABCD中,若AE平分DAB,AB=5cm,AD9cm,則EC .C4cmABDE平行線間的距離三例4 如圖,在 ABCD中,DEAB,BFCD,垂足分別是E,F(xiàn)求證:AE=CF證明: 四邊形ABCD是平行四邊形, A= C,AD=CB.又AED= CFB=90, ADECBF(AAS),AE=CF. 思考 在上述證明中還能得出什么結(jié)論?DABC

9、FEDE=BFCBFEAD若m / n,作 AB / CD / EF,分別交 m于A、C、E,交 n于B、D、F.由平行四邊形的性質(zhì)得AB=CD=EF.兩條平行線之間的平行線段相等.mn由平行四邊形的定義易知四邊形ABCD,CDEF均為平行四邊形.歸納總結(jié)兩條平行線間的距離相等.若m / n,AB、CD、EF垂直于 n,交n于B、D、F,交 m于A、C、E.BFEAnmCD點到直線的距離同前面易得AB=CD=EF兩條平行線間的距離:兩條平行線中,一條直線上任意一點到另一條直線的距離如圖,ABCD,BCAB,若AB=4cm,SABC=12cm2,求ABD中AB邊上的高解:SABC = ABBC,

10、= 4 BC=12cm2,BC=6cm.ABCD,點D到AB邊的距離等于BC的長度,ABD中AB邊上的高為6cm練一練當(dāng)堂練習(xí)1.在ABCD中,M是BC延長線上的一點,若A=135,則MCD的度數(shù)是( ) A .45 B. 55 C. 65 D. 75AA BCM D 2.判斷題(對的在括號內(nèi)填“”,錯的填“”): (1)平行四邊形兩組對邊分別平行且相等. ( ) (2)平行四邊形的四個內(nèi)角都相等. ( ) (3)平行四邊形的相鄰兩個內(nèi)角的和等于180 ( ) (4)如果平行四邊形相鄰兩邊長分別是2cm和 3cm,那么周長是10cm. ( ) (5)在平行四邊形ABCD中,如果A=42, 那么

11、B=48. ( ) (6)在平行四邊形ABCD中,如果A=35, 那么C=145. ( ) 4.如圖,直線AE/BD,點C在BD上,若AE=5,BD=8, ABD的面積為16,則ACE的面積為 .ABCDE103.如圖,D、 E、F 分別在ABC的邊AB、BC、AC上,且DEAC,DFBC,EFAB,則圖中有_個平行四邊形.第3題圖第4題圖3證明: 四邊形ABCD是平行四邊形, ABCD,AD=BC. CDE= DEA,CFB= FBA.又DE,BF分別平分ADC,ABC,CDE= ADE,CBF= FBA, DEA= ADE,CFB=CBF,AE=AD, CF=BC, AE= CF.5.已知

12、在平行四邊形ABCD中,DE平分ADC,BF平分ABC.求證:AE=CF. ABDCEF6.有一塊形狀如圖 所示的玻璃,不小心把EDF部分打碎了,現(xiàn)在只測得AE=60cm,BC=80cm,B=60且AEBC、ABCF,你能根據(jù)測得的數(shù)據(jù)計算出DE的長度和D的度數(shù)嗎?解:AE/BC,AB/CF,四邊形ABCD是平行四邊形.D=B=60,AD=BC=80cm.ED=AD-AE=20cm.答:DE的長度是20cm, D的度數(shù)是60. 證明: 四邊形BEFM是平行四邊形, BM=EF,AB/EF. AD平分BAC, BAD=CAD. AB/EF, BAD=AEF, CAD =AEF, AF=EF, A

13、F=BM.7.如圖,在ABC中,AD平分BAC,點M,E,F分別是AB,AD,AC上的點,四邊形BEFM是平行四邊形.求證:AF=BM.BDCEFAM課堂小結(jié)平行四邊形定義兩組對邊分別平行的四邊形性質(zhì)兩組對邊分別平行,相等兩條平行線間的距離相等,兩條平行線間的平行線段也相等兩組對角分別相等,鄰角互補18.1.1 平行四邊形的性質(zhì)第十八章 平行四邊形導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)八年級數(shù)學(xué)下(RJ) 教學(xué)課件第2課時 平行四邊形的對角線的特征學(xué)習(xí)目標(biāo)1.掌握平行四邊形對角線互相平分的性質(zhì);(重點)2.經(jīng)歷對平行四邊形性質(zhì)的猜想與證明的過程,滲透 轉(zhuǎn)化思想, 體會圖形性質(zhì)探究的一般思路.(難點)

14、 導(dǎo)入新課 一位飽經(jīng)滄桑的老人,經(jīng)過一輩子的辛勤勞動,到晚年的時候,終于擁有了一塊平行四邊的土地,由于年邁體弱,他決定把這塊土地分給他的四個孩子,他是這樣分的: 當(dāng)四個孩子看到時,爭論不休,都認為自己分的地少,同學(xué)們,你認為老人這樣分合理嗎?為什么?情景引入講授新課平行四邊形的對角線的性質(zhì)一 我們知道平行四邊形的邊角這兩個基本要素的性質(zhì),那么平行四邊形的對角線又具有怎樣的性質(zhì)呢?ABCDO 如圖,在ABCD中,連接AC,BD,并設(shè)它們相交于點O. OA與OC,OB與OD有什么關(guān)系?猜一猜OA=OC,OB=OD怎樣證明這個猜想呢?已知:如圖, ABCD的對角線AC、BD相交于點O.求證:OA=O

15、C,OB=OD. 證明:四邊形ABCD是平行四邊形, AD=BC,ADBC, 1=2,3=4, AODCOB(ASA), OA=OC,OB=OD.ACDBO3241證一證ACDBO平行四邊形的對角線互相平分.平行四邊形的性質(zhì)應(yīng)用格式:四邊形ABCD是平行四邊形, OA=OC,OB=OD.歸納總結(jié)例1 已知 ABCD的周長為60cm,對角線AC、BD相交于點O,AOB的周長比DOA的周長長5cm,求這個平行四邊形各邊的長解:四邊形ABCD是平行四邊形,OBOD,ABCD,ADBC.AOB的周長比DOA的周長長5cm,ABAD5cm.又 ABCD的周長為60cm,ABAD30cm,則ABCD17.

16、5cm,ADBC12.5cm. 平行四邊形被對角線分成四個小三角形,相鄰兩個三角形的周長之差等于鄰邊邊長之差歸納【變式題】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,平行四邊形ABCD的周長是100cm,AOB與BOC的周長的和是122cm,且AC:DB= 2:1,求AC和BD的長解:四邊形ABCD是平行四邊形,AD=BC,AB=CD,OB=OD,AB+BC=50.AOB與BOC的周長的和是122cm,OA+OB+AB+OB+OC+BC=122,即AC+BD=122-50=72.又AC:DB=2:1,AC=48cm,BD=24cm例2 如圖,平行四邊形ABCD中,AC、BD交于O

17、點,點E、F分別是AO、CO的中點,試判斷線段BE、DF的關(guān)系并證明你的結(jié)論解:BEDF,BEDF.理由如下:四邊形ABCD是平行四邊形,OAOC,OBOD,OEOF.在OFD和OEB中,OEOF,DOFBOE,ODOB, OFDOEB,OEBOFD,BEDF,BEDF.例3 如圖, ABCD的對角線AC,BD交于點O.點O作直線EF,分別交AB,CD于點E,F(xiàn).求證:OE=OF.ABCDFEO證明:四邊形ABCD是平行四邊形,ODF=OBE, DFO=BEO,DOFBOE(AAS),ABCD, OD=OB,OE=OF.思考 改變直線EF的位置,OE=OF還成立嗎?ABCDOEFABCDOEF

18、ABCDOEF請判斷下列圖中,OE=OF還成立么?議一議同例3易證明OE=OF還成立. 過平行四邊形的對角線交點作直線與平行四邊形的一組對邊或?qū)叺难娱L線相交,得到線段總相等.歸納1.如圖,平行四邊形ABCD的對角線AC,BD交于點O,若AD=16,AC=24,BD=12,則OBC的周長為 () A.26 B.34 C.40 D.52 練一練 B2.如圖,在ABCD中,對角線AC和BD相交于點O,AOB的周長為15,AB=6,則對角線AC、BD的長度的和是 ()A.9 B.18 C.27 D.36 BABCDO解:四邊形ABCD是平行四邊形,根據(jù)勾股定理得BC=AD=8,CD=AB=10.是直

19、角三角形.又OA=OC,例4如圖,在ABCD中,AB=10,AD=8,ACBC. 求BC,CD,AC,OA的長,以及ABCD的面積平行四邊形的面積二例5 如圖,平行四邊形ABCD中,DEAB于E,DFBC于F,若平行四邊形ABCD的周長為48,DE=5,DF=10,求平行四邊形ABCD的面積.解:設(shè)AB=x,則BC=24-x.根據(jù)平行四邊形的面積公式可得5x=10(24-x),解得x=16則平行四邊形ABCD的面積為516=80 已知平行四邊形的高DE,DF,根據(jù)“等面積法”及平行四邊形的性質(zhì)列方程求解.歸納問題 平行四邊形的對角線分平行四邊形ABCD為四個三角形,它們的面積有怎樣的關(guān)系呢?解

20、:相等.理由如下:四邊形ABCD是平行四邊形,OAOC,OBOD.ADO與ODC等底同高,SADO=SODC.同理可得SADO=SODC=SBCO=SAOB.還可結(jié)合全等來證喲. 平行四邊形的對角線分平行四邊形為四個面積相等的三角形,且都等于平行四邊形面積的四分之一.相對的兩個三角形全等.歸納ABCDOFE例6 如圖,AC,BD交于點O,EF過點O,平行四邊形ABCD被EF所分的兩個四邊形面積相等嗎?MN解:設(shè)直線EF交AD,BC于點N,M.ADBC,NAO=MCO,ANO=CMO.又AO=CO,NAOMCO,S四邊形ANMB=SNAO+SAOB+SMOB=SMCO+SAOB+SMOB =SA

21、OB+SCOB= .S四邊形ANMB=S四邊形CMND,即平行四邊形ABCD被EF所分的兩個四邊形面積相等.典例精析ABDOEFABCDOEFCABCDOEF思考 如圖,AC,BD交于點O,EF過點O,平行四邊形ABCD被EF所分的兩個四邊形面積相等嗎? 過對角線交點的任一條直線都將平行四邊形分成面積相等的兩部分.歸納同例5易求得平行四邊形ABCD被EF所分的兩個四邊形面積相等.1.把一個平行四邊形分成3個三角形,已知兩個陰影三角形的面積分別是9cm2和12cm2,求平行四邊形的面積解:(9+12)2=212=42(cm2)答:平行四邊形的面積是42cm2練一練2.如圖,歡歡看到平行四邊形的草

22、地中間有一水井,為了澆水的方便,歡歡建議我們經(jīng)過水井修小路,一樣可以把草地分成面積相等的兩部分,同學(xué)們,你知道聰明的歡歡是怎么分的嗎? BMCDAO解:如圖所示當(dāng)堂練習(xí)1.如圖,ABCD的對角線AC、BD相交于點O,且 AC+BD=16,CD=6,則ABO的周長是( )A. 10 B. 14 C. 20 D. 22 BBCDAO2.如圖,在平行四邊形ABCD中,下列結(jié)論中錯誤的是()AABO=CDO BBAD=BCD CAO=CO DACBD BCDAOD3.在ABCD中,AC=24,BD=38,AB=m, 則m的取值范圍是 ( ) A. 24m39 B.14m62 C.7m31 D.7m12

23、 BCDAOC4.如圖,ABCD的對角線AC,BD相交于O,EF過點O與AD,BC分別相交于E,F(xiàn),若AB=4,BC=5,OE=1.5,那么四邊形EFCD的周長為()A.16 B.14 C.12 D.10 ADCBFEOC5.如圖,平行四邊形ABCD的面積為20,對角線AC,BD相交于點O,點E,F(xiàn)分別是AB,CD上的點,且AE=DF,則圖中陰影部分的面積為_56.如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,ABAC,AB=3,AD=5,則BD的長是 .7.如圖,平行四邊形ABCD的對角線相交于點O,且ABAD,過O作OEBD,交BC于點E.若CDE的周長為10,則平行四邊形ABC

24、D的周長是多少?解:四邊形ABCD是平行四邊形,AB=CD,BC=AD,OB=OD.OEBD,BE=DE.CDE的周長為10,DE+CE+CD=BE+CE+CD=BC+CD=10,平行四邊形ABCD的周長為2(BC+CD)=208.如圖,已知O是平行四邊形ABCD的對角線的交點,AC=24,BD=18,AB=16,求OCD的周長及AD邊的取值范圍解:由題意得OA=OC=12,OB=OD=9,CD=AB=16,OCD的周長為12+9+16=37.在ACD中,24-16AD24+16,8AD40;在ABD中,18-16AD18+16,2AD34;在AOD中,12-9AD12+9,3AD21綜上所述

25、,AD的取值范圍應(yīng)是8AD21與三角形三邊關(guān)系結(jié)合能力提升:課堂小結(jié)平行四邊形對角線的性質(zhì)平行四邊形對角線互相平分兩條對角線分平行四邊形為面積相等的四個三角形過平行四邊形的對角線交點作直線與平行四邊形的一組對邊或?qū)叺难娱L線相交,得到線段總相等.過對角線交點的任一條直線都將平行四邊形分成面積相等的兩部分.且與對角線圍成的三角形相對的兩個全等.18.1.2 平行四邊形判定第十八章 平行四邊形導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)八年級數(shù)學(xué)下(RJ) 教學(xué)課件第1課時 平行四邊形的判定(1)學(xué)習(xí)目標(biāo)1.經(jīng)歷平行四邊形判定定理的猜想與證明過程,體會 類比思想及探究圖形判定的一般思路;(重點)2.掌握平行四

26、邊形的三個判定定理,能根據(jù)不同條件 靈活選取適當(dāng)?shù)呐卸ǘɡ磉M行推理論證.(難點) 兩組對邊分別平行的四邊形叫平行四邊形.ABCD四邊形ABCD如果ABCD ADBCBDABCDAC問題1 平行四邊形的定義是什么?有什么作用?可以用平行四邊形的定義來判定平行四邊形,如:導(dǎo)入新課復(fù)習(xí)引入問題2 除了兩組對邊分別平行,平行四邊形還有哪些性質(zhì)?平行四邊形的對邊相等.平行四邊形的對角相等.平行四邊形的對角線互相平分.邊:角:對角線:思考 我們得到的這些逆命題是否都成立?這節(jié)課我們一起探討一下吧.問題3 平行四邊形上面的三條性質(zhì)的逆命題各是什么?兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形

27、是平行四邊形.兩組對邊分別相等的四邊形是平行四邊形; 你能根據(jù)平行四邊形的定義證明它們嗎?已知: 四邊形ABCD中,AB=DC,AD=BC.求證: 四邊形ABCD是平行四邊形.ABCD連接AC,在ABC和CDA中,AB=CD (已知),BC=DA(已知),AC=CA (公共邊),ABCCDA(SSS) 1=4 , 2=3,AB CD , AD BC,四邊形ABCD是平行四邊形.證明:1423證一證平行四邊形的判定定理:兩組對邊分別相等的四邊形是平行四邊形.歸納總結(jié)幾何語言描述:在四邊形ABCD中,AB=CD,AD=BC,四邊形ABCD是平行四邊形.BDAC例1 如圖,在RtMON中,MON90

28、.求證:四邊形PONM是平行四邊形證明:RtMON中,由勾股定理得(x5)242(x3)2, 解得x8.PM11x3,ONx53,MNx35.PMON,OPMN,四邊形PONM是平行四邊形典例精析例2 如圖,在ABC中,分別以AB、AC、BC為邊在BC的同側(cè)作等邊ABD、等邊ACE、等邊BCF.試說明四邊形DAEF是平行四邊形解:ABD和FBC都是等邊三角形,DBFFBAABCABF60, DBFABC.又BDBA,BFBC,ABCDBF(SAS),ACDFAE.同理可證ABCEFC,ABEFAD,四邊形DAEF是平行四邊形如圖, ADAC,BCAC,且AB=CD,求證:四邊形ABCD是平行四

29、邊形.證明:在RtABC和RtACD中,AC=CA,AB=CD,RtABCRtCDA(HL),BC=DA.又AB=CD,四邊形PONM是平行四邊形練一練已知:四邊形ABCD中,A=C,B=D,求證:四邊形ABCD是平行四邊形.ABCD又A=C,B=D,A+C+B+D=360,2A+2B=360,即A+B=180, ADBC.四邊形ABCD是平行四邊形.同理得 AB CD,證明:證一證平行四邊形的判定定理:兩組對角分別相等的四邊形是平行四邊形.歸納總結(jié)幾何語言描述:在四邊形ABCD中,A=C,B=D,四邊形ABCD是平行四邊形.BDAC例3 如圖,四邊形ABCD中,ABDC,B55,185,24

30、0.(1)求D的度數(shù);(2)求證:四邊形ABCD是平行四邊形(1)解:D21180,D1802155;(2)證明:ABDC,2CAB,DAB12125.DCBDABDB360,DCBDAB125.又DB55,四邊形ABCD是平行四邊形1.判斷下列四邊形是否為平行四邊形:ADCB11070110ABCD12060是不是練一練2.能判定四邊形ABCD是平行四邊形的條件: A:B:C:D的值為 ()A. 1:2:3:4 B. 1:4:2:3 C. 1:2:2:1 D. 3:2:3:2 D 如圖,將兩根細木條AC、BD的中點重疊,用小釘固定在一起,用橡皮筋連接木條的頂點,做成一個四邊形ABCD.轉(zhuǎn)動兩

31、根木條,四邊形ABCD一直是一個平行四邊形嗎?BDOAC對角線互相平分的四邊形是平行四邊形三猜想:四邊形ABCD一直是一個平行四邊形. 你能根據(jù)平行四邊形的定義證明它們嗎?ABCDO 已知:四邊形ABCD中,OA=OC,OB=OD.求證:四邊 形ABCD是平行四邊形.證明:在AOB和COD中,OA=OC (已知),OB=OD (已知),AOB=COD (對頂角相等),AOBCOD(SAS), BAO=OCD , ABO=CDO,AB CD , AD BC四邊形ABCD是平行四邊形.證一證平行四邊形的判定定理:對角線互相平分的四邊形是平行四邊形.歸納總結(jié)幾何語言描述:在四邊形ABCD中,AO=C

32、O,DO=BO,四邊形ABCD是平行四邊形.BODAC例4 如圖, ABCD 的對角線AC,BD相交于點O,E,F是AC上的兩點,并且AE=CF.求證:四邊形BFDE是平行四邊形. BODACEF證明:四邊形ABCD是平行四邊形, AO=CO,BO=DO.AE=CF , AO-AE=CO-CF,即EO=OF.又BO=DO,四邊形BFDE是平行四邊形.典例精析【變式題】如圖,AC是平行四邊形ABCD的一條對角線,BMAC于M,DNAC于N,四邊形BMDN是平行四邊形嗎?說說你的理由解:四邊形BMDN是平行四邊形理由如下:連接BD交AC于OBMAC于M,DNAC于N,AND=CMB=90四邊形AB

33、CD是平行四邊形,OB=OD,AO=CO,AD=BC,ADBC,DAN=BCM,ADNCBM,AN=CM,OA-AN=OC-CM,即ON=OM,四邊形BMDN是平行四邊形O拓展探究 昨天李明同學(xué)在生物實驗室做實驗時,不小心碰碎了實驗室的一塊平行四邊形的實驗用的玻璃片,只剩下如圖所示部分,他想回家去割一塊賠給學(xué)校,帶上玻璃剩下部分去玻璃店不安全,于是他想把原來的平行四邊形重新在紙上畫出來?然后帶上圖紙去就行了,可原來的平行四邊形怎么給它畫出來呢(A,B,C為三頂點,即找出第四個頂點D)?ABCDABC方法依據(jù):兩組對邊分別平行的四邊形是平行四邊形.方法一:DABC方法依據(jù):兩組對邊分別相等的四邊

34、形是平行四邊形.方法二:DOABC方法依據(jù):對角線互相平分的四邊形是平行四邊形.方法三:1.根據(jù)下列條件,不能判定四邊形為平行四邊形的是 ( )A.兩組對邊分別相等 B.兩條對角線互相平分C.兩條對角線相等 D.兩組對邊分別平行2.如圖,在四邊形ABCD中,AC與BD交于點O.如果AC=8cm,BD=10cm,那么當(dāng)AO=_cm,BO=_cm時,四邊形ABCD是平行四邊形.BODACC45練一練當(dāng)堂練習(xí)1.判斷對錯:(1)有一組對邊平行的四邊形是平行四邊形. ( ) (2)有兩條邊相等,并且另外的兩條邊也相等的四邊 形一定是平行四邊形. ( )(3)對角線互相平分的四邊形是平行四邊形. ( )

35、 (4)一條對角線平分另一條對角線的四邊形是平行四 邊形. ( )(5)有一組對角相等且一組對邊平行的四邊形是平行 四邊形. ( ) 2.如圖,四邊形ABCD的對角線交于點O,下列哪組條件不能判斷四邊形ABCD是平行四邊形()AOA=OC,OB=OD BAB=CD,AO=CO CAB=CD,AD=BC DBAD=BCD,ABCD BODACB3.如圖,在四邊形ABCD中,(1)如果ABCD,ADBC,那么四邊形ABCD是 _.(2)如果A:B: C:D=a:b:a:b(a,b為正 數(shù)),那么四邊形ABCD是_.(3)如果AD=6cm,AB=4cm,那么當(dāng)BC=_cm, CD=_cm時,四邊形A

36、BCD為平行四邊形. BDAC平行四邊形平行四邊形644.如圖,五邊形ABCDE是正五邊形,連接BD、CE,交于點P 求證:四邊形ABPE是平行四邊形證明:五邊形ABCDE是正五邊形,正五邊形的每個內(nèi)角的度數(shù)是 AB=BC=CD=DE=AE,DEC=DCE= (180-108)=36,同理CBD=CDB=36,ABP=AEP=108-36=72,BPE=360-108-72-72=108=A,四邊形ABPE是平行四邊形ABCDEP5.如圖,已知E,F(xiàn),G,H分別是ABCD的邊AB,BC,CD,DA上的點,且AE=CG,BF=DH求證:四邊形EFGH是平行四邊形證明:在平行四邊形ABCD中,A=

37、C,AD=BC,又BF=DH,AH=CF.又AE=CG,AEHCGF(SAS),EH=GF.同理得BEFDGH(SAS),GH=EF,四邊形EFGH是平行四邊形6.如圖,AB、CD相交于點O,ACDB,AOBO,E、F分別是OC、OD的中點求證:(1)AOCBOD;(2)四邊形AFBE是平行四邊形證明:(1)ACBD,CD.又COA=DOB,AOBO ,AOCBOD(AAS);(2)AOCBOD,CODO.E、F分別是OC、OD的中點,EOFO.又AOBO,四邊形AFBE是平行四邊形7.學(xué)校買了四棵樹,準(zhǔn)備栽在花園里,已經(jīng)栽了三棵(如圖),現(xiàn)在學(xué)校希望這四棵樹能組成一個平行四邊形,你覺得第四棵

38、樹應(yīng)該栽在哪里?A1A3A2ABC課堂小結(jié)平行四邊形的判定(1)定義法:兩組對邊分別平行的四邊形叫平行四邊形.兩組對邊分別相等的四邊形是平行四邊形.兩組對角分別相等的四邊形是平行四邊形.對角線互相平分的四邊形是平行四邊形.18.1.2 平行四邊形判定第十八章 平行四邊形導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)八年級數(shù)學(xué)下(RJ) 教學(xué)課件第2課時 平行四邊形的判定(2)學(xué)習(xí)目標(biāo)1.掌握“一組對邊平行且相等的四邊形是平行四邊形” 的判定方法.(重點)2.會進行平行四邊形的性質(zhì)與判定的綜合運用.(難點) 數(shù)學(xué)來源于生活,高鐵被外媒譽為我國新四大發(fā)明之一,我們知道鐵路的兩條直鋪的鐵軌互相平行,那么鐵路工人是

39、怎樣的確保它們平行的呢?情景引入導(dǎo)入新課只要使互相平行的夾在鐵軌之間的枕木長相等就可以了那這是為什么呢?會不會跟我們學(xué)過的平行四邊形有關(guān)呢?問題 我們知道,兩組對分別平行或相等的是平行四邊形.如果只考慮四邊形的一組對邊,它們滿足什么條件時這個四邊形能成為平行四邊形呢?猜想1:一組對邊相等的四邊形是平行四邊形.講授新課一組對邊平行且相等的四邊形是平行四邊形一等腰梯形不是平行四邊形,因而此猜想錯誤.猜想2:一組對邊平行的四邊形是平行四邊形.梯形的上下底平行,但不是平行四邊形,因而此猜想錯誤.BA 活動 如圖,將線段AB向右平移BC長度后得到線段 CD,連接AD,BC,由此你能猜想四邊形ABCD的形

40、狀嗎?DC四邊形ABCD是平行四邊形猜想3:一組對邊平行且相等的四邊形是平行四邊形.你能證明嗎?ABCD證明思路作對角線構(gòu)造全等三角形一組對應(yīng)邊相等兩組對邊分別相等四邊形ABCD是平行四邊形如圖,在四邊形ABCD中,AB=CD且ABCD,求證:四邊形ABCD是平行四邊形.證一證ABCD21證明:連接AC.ABCD, 1=2.在ABC和CDA中,AB=CD, AC=CA,1=2,ABCCDA(SAS),BC=DA .又AB= CD, 四邊形ABCD是平行四邊形.平行四邊形的判定定理:一組對邊平行且相等的四邊形是平行四邊形.歸納總結(jié)幾何語言描述:在四邊形ABCD中,ABCD,AB=CD,四邊形AB

41、CD是平行四邊形.BDAC典例精析 證明: 四邊形ABCD是平行四邊形,AB =CD,EB /FD又 EB = AB ,F(xiàn)D = CD,EB =FD 四邊形EBFD是平行四邊形 例1 如圖 ,在平行四邊形ABCD中,E,F(xiàn)分別是AB,CD的中點.求證:四邊形EBFD是平行四邊形. 例2 如圖,點A,B,C,D在同一條直線上,點E,F(xiàn)分別在直線AD的兩側(cè),AE=DF,A=D,AB=DC求證:四邊形BFCE是平行四邊形證明:AB=CD,AB+BC=CD+BC,即AC=BD,在ACE和DBF中, ACBD ,AD, AEDF ,ACEDBF(SAS),CE=BF,ACE=DBF,CEBF,四邊形BF

42、CE是平行四邊形 【變式題】 如圖,點C是AB的中點,AD=CE,CD=BE(1)求證:ACDCBE;(2)求證:四邊形CBED是平行四邊形證明:(1)點C是AB的中點,AC=BC.在ADC與CEB中, ADCE , CDBE , ACBC ,ADCCEB(SSS),(2)ADCCEB,ACD=CBE,CDBE.又CD=BE,四邊形CBED是平行四邊形練一練1.已知四邊形ABCD中有四個條件:ABCD,AB=CD,BCAD,BC=AD,從中任選兩個,不能使四邊形ABCD成為平行四邊形的選法是 ()AABCD,AB=CDBABCD,BCAD CABCD,BC=AD DAB=CD,BC=AD CA

43、BCDEF證明:四邊形AEFD和EBCF都是平行四邊形,AD EF,AD=EF, EF BC, EF=BC.AD BC,AD=BC.四邊形ABCD是平行四邊形.2.四邊形AEFD和EBCF都是平行四邊形,求證:四邊形ABCD 是平行四邊形.例3 如圖,ABC中,BD平分ABC,DFBC,EFAC,試問BF與CE相等嗎?為什么?解:BFCE理由如下:DFBC,EFAC,四邊形FECD是平行四邊形,F(xiàn)DB=DBE,F(xiàn)D=CE.BD平分ABC,F(xiàn)BD=EBD,F(xiàn)BD=FDB.BF=FD.BFCE.平行四邊形的性質(zhì)與判定的綜合運用二例4 如圖,將ABCD沿過點A的直線l折疊,使點D落到AB邊上的點D處

44、,折痕l交CD邊于點E,連接BE求證:四邊形BCED是平行四邊形.證明:由題意得DAE=DAE,DEA=DEA,D=ADE,DEAD,DEA=EAD,DAE=EAD=DEA=DEA,DAD=DED,四邊形DADE是平行四邊形,DE=AD.四邊形ABCD是平行四邊形,ABDC,AB=DC,CEDB,CE=DB,四邊形BCED是平行四邊形. 此題利用翻折變換的性質(zhì)以及平行線的性質(zhì)得出DAE=EAD=DEA=DEA,再結(jié)合平行四邊形的判定及性質(zhì)進行解題.歸納練一練1.四邊形ABCD中,對角線AC、BD相交于點O,給出下列四個條件:ADBC;ADBC;OAOC;OBOD.從中任選兩個條件,能使四邊形A

45、BCD為平行四邊形的選法有()A3種B4種C5種D6種BODACB2.如圖,在ABCD中,E,F(xiàn)分別是AB,CD的中點,連接DE,EF,BF,寫出圖中除ABCD以外的所有的平行四邊形.解:四邊形ABCD是平行四邊形,ADBC,AD=BC.E,F(xiàn)分別是AB,CD的中點,AE=BF=DE=FC,四邊形ADFE是平行四邊形,四邊形EFCB是平行四邊形,四邊形BEDF是平行四邊形.當(dāng)堂練習(xí)1.在ABCD中,E、F分別在BC、AD上,若想要使四邊形AFCE為平行四邊形,需添加一個條件,這個條件不可以是 ()AAF=CE BAE=CF CBAE=FCD DBEA=FCE B2. 已知四邊形ABCD中,AB

46、CD,AB=CD,周長為40cm,兩鄰邊的比是3:2,則較大邊的長度是( ) A8cm B10cm C12cm D14cm C3.如圖,在平行四邊形ABCD中,EFAD,HNAB,則圖中的平行四邊形的個數(shù)共有_個.94.如圖,點E,C在線段BF上,BE=CF,B=DEF,ACB=F,求證:四邊形ABED為平行四邊形證明:BE=CF,BE+EC=CF+EC即BC=EF又B=DEF,ACB=F,ABCDEF,AB=DE.B=DEF,ABDE四邊形ABED是平行四邊形5.如圖,ABC中,AB=AC=10,D是BC邊上的任意一點,分別作DFAB交AC于F,DEAC交AB于E,求DE+DF的值解:DEA

47、C,DFAB,四邊形AEDF是平行四邊形,DE=AF.又AB=AC=10,B=C.DFAB,CDF=B,CDF=C,DF=CF,DE+DF=AF+FC=AC=106.如圖,在四邊形ABCD中,ADBC,AD=12cm,BC=15cm,點P自點A向D以1cm/s的速度運動,到D點即停止點Q自點C向B以2cm/s的速度運動,到B點即停止,點P,Q同時出發(fā),設(shè)運動時間為t(s)(1)用含t的代數(shù)式表示: AP=_; DP=_; BQ=_;CQ=_;tcm(12-t)cm(15-2t)cm2tcm能力提升:(2)當(dāng)t為何值時,四邊形APQB是平行四邊形?解:根據(jù)題意有AP=tcm,CQ=2tcm,PD

48、=(12-t)cm,BQ=(15-2t)cmADBC,當(dāng)AP=BQ時,四邊形APQB是平行四邊形t=15-2t,解得t=5t=5s時四邊形APQB是平行四邊形;解:由AP=tcm,CQ=2tcm,AD=12cm,BC=15cm,PD=AD-AP=12-t,ADBC,當(dāng)PD=QC時,四邊形PDCQ是平行四邊形即12-t=2t,解得t=4s,當(dāng)t=4s時,四邊形PDCQ是平行四邊形(3)當(dāng)t為何值時,四邊形PDCQ是平行四邊形?課堂小結(jié)平行四邊形的判定(2)平行四邊形的性質(zhì)與判定的綜合運用一組對邊平行且相等的四邊形是平行四邊形.18.1.2 平行四邊形判定第十八章 平行四邊形導(dǎo)入新課講授新課當(dāng)堂練

49、習(xí)課堂小結(jié)八年級數(shù)學(xué)下(RJ) 教學(xué)課件第3課時 三角形的中位線學(xué)習(xí)目標(biāo)1.理解三角形中位線的概念,掌握三角形的中位線 定理.(重點)2.能利用三角形的中位線定理解決有關(guān)證明和計算問題.(重點)問題 平行四邊形的性質(zhì)和判定有哪些?導(dǎo)入新課復(fù)習(xí)引入邊:角:對角線:BODACABCD, ADBCAB=CD, AD=BCABCD, AD=BCBAD=BCD,ABC=ADCAO=CO,DO=BO判定性質(zhì)我們探索平行四邊形時,常常轉(zhuǎn)化為三角形,利用三角形的全等性質(zhì)進行研究,今天我們一起來利用平行四邊形來探索三角形的某些問題吧.思考 如圖,有一塊三角形蛋糕,準(zhǔn)備平分給四個小朋友,要求四人所分的形狀大小相同

50、,該怎樣分呢?講授新課三角形的中位線定理一概念學(xué)習(xí)定義:連接三角形兩邊中點的線段叫做三角形的中位線.ABCDE如圖,在ABC中,D、E分別是AB、AC的中點,連接DE.則線段DE就稱為ABC的中位線.問題1 一個三角形有幾條中位線?你能在ABC中畫出它所有的中位線嗎?ABCDEF有三條,如圖,ABC的中位線是DE、DF、EF.問題2 三角形的中位線與中線有什么區(qū)別?中位線是連接三角形兩邊中點的線段. 中線是連結(jié)一個頂點和它的對邊中點的線段.問題3:如圖,DE是ABC的中位線,DE與BC有怎樣的關(guān)系?DE兩條線段的關(guān)系位置關(guān)系數(shù)量關(guān)系分析:DE與BC的關(guān)系猜想:DEBC? 度量一下你手中的三角形

51、,看看是否有同樣的結(jié)論?并用文字表述這一結(jié)論問題4:平行角平行四邊形或線段相等一條線段是另一條線段的一半倍長短線分析1:DE猜想:三角形的中位線平行于三角形的第三邊且等于第三邊的一半 問題3:如何證明你的猜想?分析2:DE互相平分構(gòu)造平行四邊形倍長DE證明:DE延長DE到F,使EF=DE連接AF、CF、DC AE=EC,DE=EF ,四邊形ADCF是平行四邊形F四邊形BCFD是平行四邊形,CF AD ,CF BD ,又 ,DF BC DEBC, 如圖,在ABC中,點D,E分別是AB,AC邊的中點,求證: 證一證DE證明:延長DE到F,使EF=DEF四邊形BCFD是平行四邊形ADECFEADE=

52、F連接FCAED=CEF,AE=CE,證法2: ,AD=CF,BD CF又 ,DF BC DEBC, CF AD , 三角形的中位線平行于三角形的第三邊且等于第三邊的一半DEABC中,若D、E分別是邊AB、AC的中點,則DEBC,DE= BC三角形中位線定理:符號語言:歸納總結(jié)ABCDEF重要發(fā)現(xiàn):中位線DE、EF、DF把ABC分成四個全等的三角形;有三組共邊的平行四邊形,它們是四邊形ADFE和BDEF,四邊形BFED和CFDE,四邊形ADFE和DFCE.頂點是中點的三角形,我們稱之為中點三角形;中點三角形的周長是原三角形的周長的一半.面積等于原三角形面積的四分之一.由此你知道怎樣分蛋糕了嗎典

53、例精析 例1 如圖,在ABC中,D、E分別為AC、BC的中點,AF平分CAB,交DE于點F.若DF3,求AC的長解:D、E分別為AC、BC的中點,DEAB,23.又AF平分CAB,13,12,ADDF3,AC2AD2DF6.123 例2 如圖,在四邊形ABCD中,AB=CD,M、N、P分別是AD、BC、BD的中點,ABD=20,BDC=70,求PMN的度數(shù)解:M、N、P分別是AD、BC、BD的中點,PN,PM分別是CDB與DAB的中位線,PM= AB,PN= DC,PMAB,PNDC,AB=CD,PM=PN,PMN是等腰三角形,PMAB,PNDC,MPD=ABD=20,BPN=BDC=70,MPN=MPD+(180NPB)=130,PMN=(180130) 2 =25 例3 如圖,在ABC中,ABAC,E為AB的中點,在AB的延長線上取一點D,使BDAB,求證:CD2CE.證明:取AC的中點F,連接BF.BDAB,BF為ADC的中位線,DC2BF.E為AB的中點,ABAC,BECF,ABCACB.BCCB,EBCFCB,CEBF,CD2CE.F 恰當(dāng)?shù)貥?gòu)造三角形中位線是解決線段倍分關(guān)系的關(guān)鍵歸納練一練1. 如圖,ABC中,D、E分別是AB、AC中點(1) 若DE=5,則BC= (2) 若B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論