版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、關于曲面及其方程第一張,PPT共七十一頁,創(chuàng)作于2022年6月八個卦限zyx01. 空間直角坐標系第二張,PPT共七十一頁,創(chuàng)作于2022年6月八個卦限zyx0. 1. 空間直角坐標系第三張,PPT共七十一頁,創(chuàng)作于2022年6月八個卦限zyx0MxyNz(x,y,z)M (x,y,z)點的坐標. 1. 空間直角坐標系第四張,PPT共七十一頁,創(chuàng)作于2022年6月0zyx0MxyNz(x,y,z)(x,y,z)坐標和點 M1. 空間直角坐標系.第五張,PPT共七十一頁,創(chuàng)作于2022年6月0zyx0NM點到坐標面的距離M點到原點的距離M點到坐標軸的距離PQ到z軸:到x軸:到y(tǒng)軸:M(x,y,z
2、)d1d2d3.1. 空間直角坐標系.第六張,PPT共七十一頁,創(chuàng)作于2022年6月x0zyM點的對稱點關于xoy面:(x,y,z) (x,y,-z)關于x軸:(x,y,z) (x,-y,-z)Q0關于原點:(x,y,z) (-x,-y,-z)1. 空間直角坐標系.M(x,y,z)xRP(x,y,-z)(x,-y,-z)(-x,-y,-z)第七張,PPT共七十一頁,創(chuàng)作于2022年6月uABc兩矢量的和在軸上的投影等于投影的和ABc2. 兩矢量和在軸上的投影第八張,PPT共七十一頁,創(chuàng)作于2022年6月AcuABcB.兩矢量的和在軸上的投影等于投影的和2. 兩矢量和在軸上的投影第九張,PPT共
3、七十一頁,創(chuàng)作于2022年6月引理ca將矢量a一投一轉(轉900),證明引入證畢(a+b)c=(a c)+(b c)c03. 證明矢量積的分配律: 兩矢方向:一致;a2|a2|= |a1|a2得a2第十張,PPT共七十一頁,創(chuàng)作于2022年6月(a+b)c=(a c)+(b c)cbaa+b(a+b)cac由矢量和的平行四邊形法則,得證c03. 證明矢量積的分配律: .bc將平行四邊形一投一轉(a+b)c=(a c)+(b c)第十一張,PPT共七十一頁,創(chuàng)作于2022年6月bc a baS=|a b|h4. 混合積的幾何意義第十二張,PPT共七十一頁,創(chuàng)作于2022年6月hac a bb4.
4、 混合積的幾何意義.第十三張,PPT共七十一頁,創(chuàng)作于2022年6月hac a bb4. 混合積的幾何意義.其混合積 abc = 0三矢 a, b, c共面因此,第十四張,PPT共七十一頁,創(chuàng)作于2022年6月xzy0母線F( x,y )=0z = 0準線 (不含z)M(x,y,z)N(x, y, 0)S曲面S上每一點都滿足方程;曲面S外的每一點都不滿足方程F(x,y)=0表示母線平行于z軸的柱面點N滿足方程,故點M滿足方程5. 一般柱面 F(x,y)=0第十五張,PPT共七十一頁,創(chuàng)作于2022年6月母線準線(不含x)F( y, z )=0 x = 0 xzy0F(y,z)=0表示母線平行于
5、x軸的柱面6. 一般柱面 F(y, z)=0第十六張,PPT共七十一頁,創(chuàng)作于2022年6月abzxyo7. 橢圓柱面第十七張,PPT共七十一頁,創(chuàng)作于2022年6月zxy = 0yo8. 雙曲柱面第十八張,PPT共七十一頁,創(chuàng)作于2022年6月zxyo9. 拋物柱面第十九張,PPT共七十一頁,創(chuàng)作于2022年6月曲線 CCy zo繞 z軸10. 旋轉面的方程第二十張,PPT共七十一頁,創(chuàng)作于2022年6月曲線 CxCy zo繞 z軸.10. 旋轉面的方程第二十一張,PPT共七十一頁,創(chuàng)作于2022年6月曲線 C旋轉一周得旋轉曲面 SCSMNzPy zo繞 z軸.f (y1, z1)=0M(x
6、,y,z)10. 旋轉面的方程.x S第二十二張,PPT共七十一頁,創(chuàng)作于2022年6月曲線 C旋轉一周得旋轉曲面 SxCSMNzP.繞 z軸.f (y1, z1)=0M(x,y,z)f (y1, z1)=0f (y1, z1)=010. 旋轉面的方程.y zo S第二十三張,PPT共七十一頁,創(chuàng)作于2022年6月x0y11. 雙葉旋轉雙曲面繞 x 軸一周第二十四張,PPT共七十一頁,創(chuàng)作于2022年6月x0zy.繞 x 軸一周11. 雙葉旋轉雙曲面第二十五張,PPT共七十一頁,創(chuàng)作于2022年6月x0zy.11. 雙葉旋轉雙曲面.繞 x 軸一周第二十六張,PPT共七十一頁,創(chuàng)作于2022年6
7、月axyo12. 單葉旋轉雙曲面上題雙曲線繞 y 軸一周第二十七張,PPT共七十一頁,創(chuàng)作于2022年6月axyoz.上題雙曲線繞 y 軸一周12. 單葉旋轉雙曲面第二十八張,PPT共七十一頁,創(chuàng)作于2022年6月a.xyoz.12. 單葉旋轉雙曲面上題雙曲線繞 y 軸一周第二十九張,PPT共七十一頁,創(chuàng)作于2022年6月13. 旋轉錐面兩條相交直線繞 x 軸一周x yo第三十張,PPT共七十一頁,創(chuàng)作于2022年6月.兩條相交直線繞 x 軸一周x yoz13. 旋轉錐面第三十一張,PPT共七十一頁,創(chuàng)作于2022年6月x yoz.兩條相交直線繞 x 軸一周得旋轉錐面.13. 旋轉錐面第三十二
8、張,PPT共七十一頁,創(chuàng)作于2022年6月yoz14. 旋轉拋物面拋物線繞 z 軸一周第三十三張,PPT共七十一頁,創(chuàng)作于2022年6月yoxz.拋物線繞 z 軸一周14. 旋轉拋物面第三十四張,PPT共七十一頁,創(chuàng)作于2022年6月y.oxz生活中見過這個曲面嗎?.14. 旋轉拋物面拋物線繞 z 軸一周得旋轉拋物面第三十五張,PPT共七十一頁,創(chuàng)作于2022年6月衛(wèi)星接收裝置14. 例.第三十六張,PPT共七十一頁,創(chuàng)作于2022年6月15.環(huán)面yxorR繞 y軸 旋轉所成曲面第三十七張,PPT共七十一頁,創(chuàng)作于2022年6月15.環(huán)面z繞 y軸 旋轉所成曲面yxo.第三十八張,PPT共七十
9、一頁,創(chuàng)作于2022年6月15.環(huán)面z繞 y軸 旋轉所成曲面環(huán)面方程.生活中見過這個曲面嗎?yxo.第三十九張,PPT共七十一頁,創(chuàng)作于2022年6月救生圈.15.環(huán)面第四十張,PPT共七十一頁,創(chuàng)作于2022年6月截痕法用z = h截曲面用y = m截曲面用x = n截曲面abcyx zo16. 橢球面第四十一張,PPT共七十一頁,創(chuàng)作于2022年6月xzy0截痕法用z = a截曲面用y = b截曲面用x = c截曲面17. 橢圓拋物面第四十二張,PPT共七十一頁,創(chuàng)作于2022年6月xzy0截痕法用z = a截曲面用y = b截曲面用x = c截曲面17. 橢圓拋物面.第四十三張,PPT共
10、七十一頁,創(chuàng)作于2022年6月用z = a截曲面用y = 0截曲面用x = b截曲面xzy0截痕法 (馬鞍面)18. 雙曲拋物面 第四十四張,PPT共七十一頁,創(chuàng)作于2022年6月截痕法.18. 雙曲拋物面 (馬鞍面)xzy0用z = a截曲面用y = 0截曲面用x = b截曲面第四十五張,PPT共七十一頁,創(chuàng)作于2022年6月截痕法.18. 雙曲拋物面 (馬鞍面)xzy0用z = a截曲面用y = 0截曲面用x = b截曲面第四十六張,PPT共七十一頁,創(chuàng)作于2022年6月 單葉:雙葉:.yx zo 在平面上,雙曲線有漸近線。 相仿,單葉雙曲面和雙葉雙曲面有漸近錐面。 用z=h去截它們,當|
11、h|無限增大時,雙曲面的截口橢圓與它的漸進錐面 的截口橢圓任意接近,即:雙曲面和錐面任意接近。漸近錐面:19. 雙曲面的漸進錐面第四十七張,PPT共七十一頁,創(chuàng)作于2022年6月 直紋面在建筑學上有意義含兩個直母線系 例如,儲水塔、電視塔等建筑都有用這種結構的。.20. 單葉雙曲面是直紋面第四十八張,PPT共七十一頁,創(chuàng)作于2022年6月 含兩個直母線系21. 雙曲拋物面是直紋面第四十九張,PPT共七十一頁,創(chuàng)作于2022年6月 n次齊次方程F(x,y,z)= 0的圖形是以原點為頂點的錐面;方程 F(x,y,z)= 0是 n次齊次的:準線頂點n次齊次方程F(x,y,z)= 0.反之,以原點為頂
12、點的錐面的方程是錐面是直紋面x0z yt是任意數(shù)22. 一般錐面第五十張,PPT共七十一頁,創(chuàng)作于2022年6月23. 空間曲線圓柱螺線P同時又在平行于z軸的方向等速地上升。其軌跡就是圓柱螺線。 圓柱面yz0 xa x = y =z =acos tbtM(x,y,z)asin ttM螺線從點P Q當 t 從 0 2,叫螺距N.Q(移動及轉動都是等速進行,所以z與t成正比。)點P在圓柱面上等速地繞z軸旋轉;第五十一張,PPT共七十一頁,創(chuàng)作于2022年6月 1.解yxzo得交線L:24. 空間曲線在坐標面上的投影由第五十二張,PPT共七十一頁,創(chuàng)作于2022年6月z =0.1yxzo解L.得交線
13、L:24. 空間曲線在坐標面上的投影.投影柱面由第五十三張,PPT共七十一頁,創(chuàng)作于2022年6月 L:xz y0( )25. 空間曲線作為投影柱面的交線(1) 消去zy2 = 4x y2 = 4x 第五十四張,PPT共七十一頁,創(chuàng)作于2022年6月 L:xz y0( ) 消去z(消去x )25. 空間曲線作為投影柱面的交線(1).y2+(z 2)2 = 4y2+(z 2)2 = 4y2 = 4x y2 = 4x 第五十五張,PPT共七十一頁,創(chuàng)作于2022年6月 L:L:xz y0L轉動坐標系,有下頁圖( )轉動坐標系,有下頁圖. 消去z(消去x ).y2+(z 2)2 = 4y2 = 4x
14、 y2+(z 2)2 = 4y2 = 4x 25. 空間曲線作為投影柱面的交線(1)第五十六張,PPT共七十一頁,創(chuàng)作于2022年6月L:Lxz y0y2+(z 2)2 = 4y2 = 4x (消去z)y 2 + (z 2)2 = 4 (消去x)y2 = 4x 26. 空間曲線作為投影柱面的交線(2)第五十七張,PPT共七十一頁,創(chuàng)作于2022年6月666x+y+z=63x+y=6227. 作圖練習x0z y 平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所圍成的立體圖第五十八張,PPT共七十一頁,創(chuàng)作于2022年6月666x+y+z=63x+y=62.x0z
15、 y 平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所圍成的立體圖27. 作圖練習第五十九張,PPT共七十一頁,創(chuàng)作于2022年6月3x+y=63x+2y=12x+y+z=6.666x0z y42 平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所圍成的立體圖27. 作圖練習第六十張,PPT共七十一頁,創(chuàng)作于2022年6月3x+y=63x+2y=12x+y+z=6.666x0z y42 平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所圍成的立體圖27. 作圖練習第六十一張,PPT共七十一頁,創(chuàng)作于2022年6月42x+y+z=6.x0z y666 平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所圍成的立體圖27. 作圖練習第六十二張,PPT共七十一頁,創(chuàng)作于2022年6月42.x0z y666 平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所圍成的立體圖27. 作圖練習第六十三張,PPT共七十一頁,創(chuàng)作于2022年6月aa xz y028. 作圖練習第六十四張,PPT共七十一頁,創(chuàng)作于2022年6月z = 0y = 0 x = 0aaxz y028. 作圖練習.第六十五張,PPT共七十一頁,創(chuàng)作于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 樁工機械維修工崗前模擬考核試卷含答案
- 纖維板熱壓工安全文明模擬考核試卷含答案
- 加氣混凝土配料澆注工安全演練知識考核試卷含答案
- 不銹鋼真空容器制作工崗前流程考核試卷含答案
- 海洋環(huán)境監(jiān)測員6S執(zhí)行考核試卷含答案
- 2025福建省高速公路融通投資有限公司公開招聘造價審核中心副主任1人筆試參考題庫附帶答案詳解(3卷)
- 2025浙江寧波甬金高速公路有限公司招聘1人筆試參考題庫附帶答案詳解(3卷)
- 2025屆理工雷科公司校園招聘筆試參考題庫附帶答案詳解(3卷)
- 寧德市2024福建中共寧德市蕉城區(qū)委黨史和地方志研究室招聘工作人員筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 2026招聘家政員面試題及答案
- 2025年天津大學管理崗位集中招聘15人備考題庫完整答案詳解
- 2025內(nèi)蒙古鄂爾多斯市鄂托克旗招聘專職社區(qū)人員30人考試筆試備考試題及答案解析
- 三方協(xié)議模板合同
- 玉米質押合同范本
- 2025西部機場集團航空物流有限公司招聘筆試考試參考題庫及答案解析
- 2025年紀檢部個人工作總結(2篇)
- 2025四川成都東部新區(qū)招聘編外工作人員29人筆試考試參考試題及答案解析
- 《11845丨中國法律史(統(tǒng)設課)》機考題庫
- 2025年消防設施操作員中級理論考試1000題(附答案)
- 廣東省領航高中聯(lián)盟2025-2026學年高三上學期12月聯(lián)考地理試卷(含答案)
- 人工挖孔樁安全防護課件
評論
0/150
提交評論