2022屆臨滄市高考數(shù)學五模試卷含解析_第1頁
2022屆臨滄市高考數(shù)學五模試卷含解析_第2頁
2022屆臨滄市高考數(shù)學五模試卷含解析_第3頁
2022屆臨滄市高考數(shù)學五模試卷含解析_第4頁
2022屆臨滄市高考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1若復數(shù)(是虛數(shù)單位),則復數(shù)在復平面內(nèi)對應的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限2在正方體中,E是棱的中點,F(xiàn)是側面內(nèi)的動點,且與平面的垂線垂直,如圖所示,下列說法不正

2、確的是( )A點F的軌跡是一條線段B與BE是異面直線C與不可能平行D三棱錐的體積為定值3某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學生人數(shù)是( )A45B50C55D604在中,是的中點,點在上且滿足,則等于( )ABCD5已知等差數(shù)列的前n項和為,且,則( )A4B8C16D26設集合,則( )ABCD7已知函數(shù),則下列判斷錯誤的是( )A的最小正周期為B的值域為C的圖象關于直線對稱D的圖象關于點對稱8如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則( )ABCD9設復數(shù)滿足,則在復平面內(nèi)的對應點位于(

3、)A第一象限B第二象限C第三象限D(zhuǎn)第四象限10已知復數(shù)z滿足iz2+i,則z的共軛復數(shù)是()A12iB1+2iC12iD1+2i11已知圓與拋物線的準線相切,則的值為()A1B2CD412已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知橢圓的左右焦點分別為,過且斜率為的直線交橢圓于,若三角形的面積等于,則該橢圓的離心率為_.14直線與拋物線交于兩點,若,則弦的中點到直線的距離等于_.15已知拋物線的焦點為,過點且斜率為1的直線與拋物線交于點,以線段為直徑的圓上存在點,使得以為直徑的圓過點,則實數(shù)的取值范圍為_16已

4、知函數(shù)的圖象在處的切線斜率為,則_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若直線與曲線交于、兩點,求的面積.18(12分)如圖,三棱錐中,點,分別為,的中點,且平面平面求證:平面;若,求證:平面平面.19(12分)已知橢圓C的中心在坐標原點,其短半軸長為1,一個焦點坐標為,點在橢圓上,點在直線上,且(1)證明:直線與圓相切;(2)設與橢圓的另一個交點為,當?shù)拿娣e最小時,求的長20(12分)己知圓

5、F1:(x+1)1 +y1= r1(1r3),圓F1:(x-1)1+y1= (4-r)1(1)證明:圓F1與圓F1有公共點,并求公共點的軌跡E的方程;(1)已知點Q(m,0)(m0),過點E斜率為k(k0)的直線與()中軌跡E相交于M,N兩點,記直線QM的斜率為k1,直線QN的斜率為k1,是否存在實數(shù)m使得k(k1+k1)為定值?若存在,求出m的值,若不存在,說明理由21(12分)某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個弓形景觀湖如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米開發(fā)商計劃從點出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上

6、的部分記作設(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長度設計到最長,求的最大值22(10分)超級病菌是一種耐藥性細菌,產(chǎn)生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗n次;(2)混合檢驗,將其中k(且)份血液樣本分別取樣混

7、合在一起檢驗,若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為次,假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p().(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經(jīng)過2次檢驗就能把陽性樣本全部檢驗出來的概率;(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.(i)試運用概率統(tǒng)計的知識,若,試求p關于k

8、的函數(shù)關系式;(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求k的最大值.參考數(shù)據(jù):,參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】將 整理成的形式,得到復數(shù)所對應的的點,從而可選出所在象限.【詳解】解:,所以所對應的點為在第一象限.故選:A.【點睛】本題考查了復數(shù)的乘法運算,考查了復數(shù)對應的坐標.易錯點是誤把 當成進行計算.2C【解析】分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進行判斷【詳解】對于,設平面與直線交于點,連接、,則為的中點分別取、的中點、,

9、連接、, ,平面,平面,平面同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結合平面,可得直線平面,即點是線段上上的動點正確對于,平面平面,和平面相交,與是異面直線,正確對于,由知,平面平面,與不可能平行,錯誤對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:【點睛】本題考查了正方形的性質(zhì)、空間位置關系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題3D【解析】根據(jù)頻率分布直方圖中頻率小矩形的高組距計算成績低于60分的頻率,再根據(jù)樣本容量求出班級人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)200.30,樣本容量(即該班

10、的學生人數(shù))是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應用問題,也考查了頻率的應用問題,屬于基礎題4B【解析】由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解【詳解】解:M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足P是三角形ABC的重心 又AM1故選B【點睛】判斷P點是否是三角形的重心有如下幾種辦法:定義:三條中線的交點性質(zhì):或取得最小值坐標法:P點坐標是三個頂點坐標的平均數(shù)5A【解析】利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列

11、的性質(zhì),考查基本量的計算,難度容易.6A【解析】解出集合,利用交集的定義可求得集合.【詳解】因為,又,所以.故選:A.【點睛】本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎題.7D【解析】先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計算能力,屬于基

12、礎題.8B【解析】,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算、數(shù)乘運算,考查學生的運算能力,是一道中檔題.9C【解析】化簡得到,得到答案.【詳解】,故,對應點在第三象限.故選:.【點睛】本題考查了復數(shù)的化簡和對應象限,意在考查學生的計算能力.10D【解析】兩邊同乘-i,化簡即可得出答案【詳解】iz2+i兩邊同乘-i得z=1-2i,共軛復數(shù)為1+2i,選D.【點睛】的共軛復數(shù)為11B【解析】因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于 半徑,可知的值為2,選B.【詳解】請在此輸入詳解!12B【

13、解析】根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得.令,解得,所以切線方程為,化簡得.由對比系數(shù)得,化簡得.構造函數(shù),所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據(jù)公共切線

14、求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數(shù)形結合的數(shù)學思想方法,考查分析思考與解決問題的能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由題得直線的方程為,代入橢圓方程得:,設點,則有,由,且解出,進而求解出離心率.【詳解】由題知,直線的方程為,代入消得:,設點,則有,而,又,解得:,所以離心率.故答案為:【點睛】本題主要考查了直線與橢圓的位置關系,三角形面積計算與離心率的求解,考查了學生的運算求解能力14【解析】由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離【詳解

15、】解:如圖,直線過定點,而拋物線的焦點為,弦的中點到準線的距離為,則弦的中點到直線的距離等于故答案為:【點睛】本題考查拋物線的簡單性質(zhì),考查直線與拋物線位置關系的應用,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,屬于中檔題15【解析】由題意求出以線段AB為直徑的圓E的方程,且點D恒在圓E外,即圓E上存在點,使得,則當與圓E相切時,此時,由此列出不等式,即可求解。【詳解】由題意可得,直線的方程為,聯(lián)立方程組,可得,設,則,設,則,又,所以圓是以為圓心,4為半徑的圓,所以點恒在圓外圓上存在點,使得以為直徑的圓過點,即圓上存在點,使得,設過點的兩直線分別切圓于點,要滿足題意,則,所以,整理得,解得,故實數(shù)的取值范圍為【

16、點睛】本題主要考查了直線與拋物線位置關系的應用,以及直線與圓的位置關系的應用,其中解答中準確求得圓E的方程,把圓上存在點,使得以為直徑的圓過點,轉(zhuǎn)化為圓上存在點,使得是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題。16【解析】先對函數(shù)f(x)求導,再根據(jù)圖象在(0,f(0)處切線的斜率為4,得f(0)4,由此可求a的值.【詳解】由函數(shù)得,函數(shù)f(x)的圖象在(0,f(0)處切線的斜率為4,.故答案為4【點睛】本題考查了根據(jù)曲線上在某點切線方程的斜率求參數(shù)的問題,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1),;(2).【解析】(1)在直線的參

17、數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以,結合可將曲線的極坐標方程化為直角坐標方程;(2)計算出直線截圓所得弦長,并計算出原點到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標方程是;(2)因為曲線的圓心為,半徑為,圓心到直線的距離為,則弦長.又到直線的距離為,所以.【點睛】本題考查參數(shù)方程、極坐標方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線與圓中三角形面積的計算,考查計算能力,屬于中等題.18證明見解析;證明見解析.【解析】利用線面平行的判定定理求證即可;為中點,為中點,可得,可知,故為直

18、角三角形,利用面面垂直的判定定理求證即可.【詳解】解: 證明:為中點,為中點,又平面,平面,平面;證明:為中點,為中點,又,則,故為直角三角形,平面平面,平面平面,平面,平面,又平面,平面平面.【點睛】本題考查線面平行和面面垂直的判定定理的應用,屬于基礎題.19(1)見解析; (2).【解析】(1)分斜率為0,斜率不存在,斜率不為0三種情況討論,設的方程為,可求解得到,可得到的距離為1,即得證;(2)表示的面積為,利用均值不等式,即得解.【詳解】(1)由題意,橢圓的焦點在x軸上,且,所以所以橢圓的方程為由點在直線上,且知的斜率必定存在,當?shù)男甭蕿?時,于是,到的距離為1,直線與圓相切當?shù)男甭什?/p>

19、為0時,設的方程為,與聯(lián)立得,所以,從而而,故的方程為,而在上,故,從而,于是此時,到的距離為1,直線與圓相切綜上,直線與圓相切(2)由(1)知,的面積為,上式中,當且僅當?shù)忍柍闪?,所以面積的最小值為1此時,點在橢圓的長軸端點,為不妨設為長軸左端點,則直線的方程為,代入橢圓的方程解得,即,所以【點睛】本題考查了直線和橢圓綜合,考查了直線和圓的位置關系判斷,面積的最值問題,考查了學生綜合分析,數(shù)學運算能力,屬于較難題.20(1)見解析,(1)存在,【解析】(1)求出圓和圓的圓心和半徑,通過圓F1與圓F1有公共點求出的范圍,從而根據(jù)可得點的軌跡,進而求出方程;(1)過點且斜率為的直線方程為,設,聯(lián)立直線方程和橢圓方程,根據(jù)韋達定理以及,可得,根據(jù)其為定值,則有,進而可得結果.【詳解】(1)因為,所以,因為圓的半徑為,圓的半徑為,又因為,所以,即,所以圓與圓有公共點, 設公共點為,因此,所以點的軌跡是以,為焦點的橢圓,所以,即軌跡的方程為;(1)過點且斜率為的直線方程為,設,由消去得到,則, 因為,所以, 將式代入整理得因為,所以當時,即時,.即存在實數(shù)使得.【點睛】本題考查橢圓定理求橢圓方程,考查橢圓中的定值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論