廣東省東莞市六校2023年高考仿真卷數(shù)學試題含解析_第1頁
廣東省東莞市六校2023年高考仿真卷數(shù)學試題含解析_第2頁
廣東省東莞市六校2023年高考仿真卷數(shù)學試題含解析_第3頁
廣東省東莞市六校2023年高考仿真卷數(shù)學試題含解析_第4頁
廣東省東莞市六校2023年高考仿真卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2023年高考數(shù)學模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則( )ABCD2一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機等可能取出小球,當有放回依次取出兩個小

2、球時,記取出的紅球數(shù)為;當無放回依次取出兩個小球時,記取出的紅球數(shù)為,則( )A,B,C,D,3已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為ABCD4某幾何體的三視圖如圖所示,則該幾何體的體積為( )ABCD5下列命題為真命題的個數(shù)是( )(其中,為無理數(shù));.A0B1C2D36設雙曲線的一條漸近線為,且一個焦點與拋物線的焦點相同,則此雙曲線的方程為( )ABCD7已知函數(shù),若關于的方程恰好有3個不相等的實數(shù)根,則實數(shù)的取值范圍為( )ABCD8九章算術中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為( )A4B8CD9已知數(shù)列對任意的有

3、成立,若,則等于( )ABCD10某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為( )AB6CD11若單位向量,夾角為,且,則實數(shù)( )A1B2C0或1D2或112已知復數(shù),則對應的點在復平面內位于( )A第一象限B第二象限C第三象限D第四象限二、填空題:本題共4小題,每小題5分,共20分。13在中,點是邊的中點,則_,_.14已知,滿足約束條件,則的最小值為_.15設,滿足約束條件,若的最大值是10,則_.16在中,角,的對邊分別為,若,且,則面積的最大值為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在直角坐標系中,以坐標原點為極點,軸的

4、正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為(1)求曲線的直角坐標方程和曲線的參數(shù)方程;(2)設曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值18(12分)眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調整眼及頭部的血液循環(huán),調節(jié)肌肉,改善眼的疲勞,達到預防近視等眼部疾病的目的.某學校為了調查推廣眼保健操對改善學生視力的效果,在應屆高三的全體800名學生中隨機抽取了100名學生進行視力檢查,并得到如圖的頻率分布直方圖.(1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以上的人數(shù);(2)為了研究學生的視力與眼保健操是否有關系,對年級

5、不做眼保健操和堅持做眼保健操的學生進行了調查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關系?(3)在(2)中調查的100名學生中,按照分層抽樣在不近視的學生中抽取8人,進一步調查他們良好的護眼習慣,在這8人中任取2人,記堅持做眼保健操的學生人數(shù)為X,求X的分布列和數(shù)學期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.87919(12分)若關于的方程的兩根都大于2,求實數(shù)的取值范圍20(12分)已知數(shù)列滿足:對一切成立.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.21(12分)(江蘇省徐州市

6、高三第一次質量檢測數(shù)學試題)在平面直角坐標系中,已知平行于軸的動直線交拋物線: 于點,點為的焦點.圓心不在軸上的圓與直線, , 軸都相切,設的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點,過且垂直于的直線為,直線, 分別與軸相交于點, .當線段的長度最小時,求的值.22(10分)設函數(shù),()求曲線在點(1,0)處的切線方程;()求函數(shù)在區(qū)間上的取值范圍參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則,.故選:

7、A.【點睛】本題考查三角函數(shù)定義、二倍角公式,考查計算求解能力,屬于基礎題.2B【解析】分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關系.【詳解】可能的取值為;可能的取值為,故,.,故,,故,.故選B.【點睛】離散型隨機變量的分布列的計算,應先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.3D【解析】由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.4D【解析】結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別

8、求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.5C【解析】對于中,根據(jù)指數(shù)冪的運算性質和不等式的性質,可判定值正確的;對于中,構造新函數(shù),利用導數(shù)得到函數(shù)為單調遞增函數(shù),進而得到,即可判定是錯誤的;對于中,構造新函數(shù),利用導數(shù)求得函數(shù)的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于中,由,可得,根據(jù)不等式的性質,可得成立,所以是正確的;對于中,設函數(shù)

9、,則,所以函數(shù)為單調遞增函數(shù),因為,則又由,所以,即,所以不正確;對于中,設函數(shù),則,當時,函數(shù)單調遞增,當時,函數(shù)單調遞減,所以當時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質,以及導數(shù)在函數(shù)中的綜合應用,其中解答中根據(jù)題意,合理構造新函數(shù),利用導數(shù)求得函數(shù)的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.6C【解析】求得拋物線的焦點坐標,可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙

10、曲線的方程為.故選:C【點睛】本題主要考查了求雙曲線的方程,屬于中檔題.7D【解析】討論,三種情況,求導得到單調區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當時,故,函數(shù)在上單調遞增,在上單調遞減,且;當時,;當時,函數(shù)單調遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點睛】本題考查了利用導數(shù)求函數(shù)的零點問題,意在考查學生的計算能力和應用能力.8B【解析】由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側棱長為2且與底面垂直,因為直三棱柱可以復原成一個長方體

11、,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關計算,屬于基礎題.9B【解析】觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有, ,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數(shù)列中的方法,并能熟練運用對應方法求解.10D【解析】根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積

12、為:,故選:D【點睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.11D【解析】利用向量模的運算列方程,結合向量數(shù)量積的運算,求得實數(shù)的值.【詳解】由于,所以,即,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數(shù)量積的運算,屬于基礎題.12A【解析】利用復數(shù)除法運算化簡,由此求得對應點所在象限.【詳解】依題意,對應點為,在第一象限.故選A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應點的坐標所在象限,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13 2 【解析】根據(jù)正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數(shù)

13、量積求解即可.【詳解】中,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數(shù)量積的應用,考查計算能力,屬于中檔題.14【解析】作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫出可行域易知在點處取最小值為.故答案為:【點睛】本題考查簡單線性規(guī)劃的最值,考查數(shù)形結合思想,考查運算求解能力,屬于基礎題.15【解析】畫出不等式組表示的平面區(qū)域,數(shù)形結合即可容易求得結果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標函數(shù)可轉化為與直線平行,數(shù)形結合可知當且僅當目標函數(shù)過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標函數(shù)的最值

14、求參數(shù)值,屬基礎題.16【解析】利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:在中,.,即,當且僅當時等號成立,面積的最大值為.故答案為:【點睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應用,以及基本不等式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)曲線的直角坐標方程為,曲線的參數(shù)方程為為參數(shù)(2)【解析】(1)將代入,可得,所以曲線的直角坐標方程為由可得,將,代入上式,可得,整理可得,所以曲線的參數(shù)方程為為參數(shù)(2)由題

15、可設,所以,所以,因為,所以,所以當,即時,l取得最大值為,所以的周長的最大值為18(1)(2)能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關系(3)詳見解析【解析】(1)由題意可計算后三組的頻數(shù)的總數(shù),由其成等差數(shù)列可得后三組頻數(shù),可得視力在5.0以上的頻率,可得全年級視力在5.0以上的的人數(shù);(2)由題中數(shù)據(jù)計算的值,對照臨界值表可得答案;(3)由題意可計算出這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,可得X可取0,1,2,分別計算出其概率,列出分布列,可得其數(shù)學期望.【詳解】解:(1)由圖可知,第一組有3人,第二組7人,第三組27人,因為后三組的頻數(shù)成等差數(shù)列

16、,共有(人)所以后三組頻數(shù)依次為24,21,18,所以視力在5.0以上的頻率為0.18,故全年級視力在5.0以上的的人數(shù)約為人(2),因此能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關系.(3)調查的100名學生中不近視的共有24人,從中抽取8人,抽樣比為,這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,X可取0,1,2,X的分布列X012PX的數(shù)學期望.【點睛】本題主要考查頻率分布直方圖,獨立性檢測及離散型隨機變量的期望與方差等相關知識,考查學生分析數(shù)據(jù)與處理數(shù)據(jù)的能力,屬于中檔題.19【解析】先令,根據(jù)題中條件得到,求解,即可得出結果.【詳解】因為關于的方程的兩根都

17、大于2,令所以有,解得,所以.【點睛】本題主要考查一元二次方程根的分布問題,熟記二次函數(shù)的特征即可,屬于常考題型.20(1);(2)【解析】(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【詳解】(1),當時,當時,得:,適合,故;(2),.【點睛】本題考查法求數(shù)列的通項公式,考查裂項求和,是基礎題.21 (1) (2)見解析.【解析】試題分析:(1)設根據(jù)題意得到,化簡得到軌跡方程;(2)設, ,構造函數(shù)研究函數(shù)的單調性,得到函數(shù)的最值.解析:(1)因為拋物線的方程為,所以的坐標為,設,因為圓與軸、直線都相切,平行于軸,所以圓的半徑為,點 ,則直線的方程為,即, 所以,又,所以,即,所以的方程為 (2)設, ,由(1)知,點處的切線的斜率存在,由對稱性不妨設,由,所以,所以, 所以 令,則,由得,由得,所以在區(qū)間單調遞減,在單調遞增,所以當時,取得極小值也是最小值,即取得最小值, 此時 點睛:求軌跡方程,一般是問誰設誰的坐標然后根據(jù)題目等式直接求解即可,而對于直線與曲線的綜合問題要先分析題意轉化為等式,例如,可以轉化為向量坐標進行運算也可以轉化為斜率來理解,然后借助韋達定理求解即可運算此類題計算一定要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論