廣州市2023年高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
廣州市2023年高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
廣州市2023年高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
廣州市2023年高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
廣州市2023年高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2023年高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1若函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)在的圖象上,則的取值范圍是( )ABCD2已知,則( )ABCD3如圖,這是某校高三年級(jí)甲、乙兩班在上學(xué)期的5次數(shù)學(xué)測(cè)試的班級(jí)平均分的莖葉圖,則

2、下列說(shuō)法不正確的是( )A甲班的數(shù)學(xué)成績(jī)平均分的平均水平高于乙班B甲班的數(shù)學(xué)成績(jī)的平均分比乙班穩(wěn)定C甲班的數(shù)學(xué)成績(jī)平均分的中位數(shù)高于乙班D甲、乙兩班這5次數(shù)學(xué)測(cè)試的總平均分是1034定義域?yàn)镽的偶函數(shù)滿足任意,有,且當(dāng)時(shí),.若函數(shù)至少有三個(gè)零點(diǎn),則的取值范圍是( )ABCD5已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,則的最小值為( )ABCD6函數(shù)圖像可能是( )ABCD7已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為( )ABCD8橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,若,則的大小為( )ABCD9已知函數(shù).設(shè),若對(duì)任意不相等的正數(shù),恒有,則實(shí)數(shù)a的取值范圍是( )ABCD10若函數(shù)的圖象如圖所示,

3、則的解析式可能是( )ABCD11如圖,在直角梯形ABCD中,ABDC,ADDC,ADDC2AB,E為AD的中點(diǎn),若,則的值為()A BCD12在中,角,的對(duì)邊分別為,若,則( )AB3CD4二、填空題:本題共4小題,每小題5分,共20分。13在平面直角坐標(biāo)系中,已知點(diǎn),若圓上有且僅有一對(duì)點(diǎn),使得的面積是的面積的2倍,則的值為_(kāi).14設(shè)全集,則_.15已知橢圓與雙曲線(,)有相同的焦點(diǎn),其左、右焦點(diǎn)分別為、,若橢圓與雙曲線在第一象限內(nèi)的交點(diǎn)為,且,則雙曲線的離心率為_(kāi)16函數(shù)的最大值與最小正周期相同,則在上的單調(diào)遞增區(qū)間為_(kāi).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(

4、12分)已知函數(shù).()若,求曲線在處的切線方程;()當(dāng)時(shí),要使恒成立,求實(shí)數(shù)的取值范圍.18(12分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.19(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)A(1,0)的直線與橢圓C交于點(diǎn)M, N,設(shè)P為橢圓上一點(diǎn),且OM+ON=t20(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系.已知點(diǎn)的直角坐標(biāo)為,過(guò)的直線與曲線相交于,兩點(diǎn).(1)若的斜率為2,求的極坐標(biāo)方程和曲線的普通方程;(2)求的值.21(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸

5、為極軸,且兩坐標(biāo)系取相同的長(zhǎng)度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標(biāo)方程:(1)求曲線的極坐標(biāo)方程;(2)若直線與曲線交于、兩點(diǎn),求的最大值.22(10分)已知函數(shù)f(x)xlnx,g(x)x2ax.(1)求函數(shù)f(x)在區(qū)間t,t1(t0)上的最小值m(t);(2)令h(x)g(x)f(x),A(x1,h(x1),B(x2,h(x2)(x1x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿足1,求實(shí)數(shù)a的取值范圍;(3)若x(0,1,使f(x)成立,求實(shí)數(shù)a的最大值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】由題

6、可知,可轉(zhuǎn)化為曲線與有兩個(gè)公共點(diǎn),可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)在上,即曲線與有兩個(gè)公共點(diǎn),即方程有兩解,即有兩解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),故時(shí)取得極大值,也即為最大值,當(dāng)時(shí),;當(dāng)時(shí),所以滿足條件故選:D【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.2C【解析】利用誘導(dǎo)公式得,再利用倍角公式,即可得答案.【詳解】由可得,.故選:C.【點(diǎn)睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意三角函數(shù)的符

7、號(hào).3D【解析】計(jì)算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無(wú)法計(jì)算,錯(cuò)誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因?yàn)榧?、乙兩班的人?shù)不知道,所以兩班的總平均分無(wú)法計(jì)算,故D錯(cuò)誤.故選:.【點(diǎn)睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.4B【解析】由題意可得的周期為,當(dāng)時(shí),令,則的圖像和的圖像至少有個(gè)交點(diǎn),畫(huà)出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域?yàn)镽的偶函數(shù),滿足任意,令,又,為周期為的偶函數(shù),當(dāng)時(shí)

8、,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個(gè)零點(diǎn),則的圖像和的圖像至少有個(gè)交點(diǎn),若,的圖像和的圖像只有1個(gè)交點(diǎn),不合題意,所以,的圖像和的圖像至少有個(gè)交點(diǎn),則有,即,.故選:B.【點(diǎn)睛】本題考查函數(shù)周期性及其應(yīng)用,解題過(guò)程中用到了數(shù)形結(jié)合方法,這也是高考??嫉臒狳c(diǎn)問(wèn)題,屬于中檔題.5D【解析】由,可求出等比數(shù)列的通項(xiàng)公式,進(jìn)而可知當(dāng)時(shí),;當(dāng)時(shí),從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,得,解得,得.當(dāng)時(shí),;當(dāng)時(shí),則的最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于中檔題.6D【解析】先判斷函數(shù)的奇偶性

9、可排除選項(xiàng)A,C,當(dāng)時(shí),可分析函數(shù)值為正,即可判斷選項(xiàng).【詳解】,即函數(shù)為偶函數(shù),故排除選項(xiàng)A,C,當(dāng)正數(shù)越來(lái)越小,趨近于0時(shí),所以函數(shù),故排除選項(xiàng)B,故選:D【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,識(shí)別函數(shù)的圖象,屬于中檔題.7C【解析】可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對(duì)數(shù)的運(yùn)算得到、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因?yàn)椋?,又,設(shè),根據(jù)條件,;若,且,則:;在上是減函數(shù);在上是增函數(shù);所以,故選:C【點(diǎn)睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個(gè)函數(shù)單調(diào)性的方法和過(guò)程:設(shè),通過(guò)條件比較與,函數(shù)

10、的單調(diào)性的應(yīng)用,屬于中檔題.8C【解析】根據(jù)橢圓的定義可得,再利用余弦定理即可得到結(jié)論.【詳解】由題意,又,則,由余弦定理可得.故.故選:C.【點(diǎn)睛】本題考查橢圓的定義,考查余弦定理,考查運(yùn)算能力,屬于基礎(chǔ)題.9D【解析】求解的導(dǎo)函數(shù),研究其單調(diào)性,對(duì)任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域?yàn)?,?dāng)時(shí),故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對(duì)任意、,恒有,即,令,則,原不等式等價(jià)于在單調(diào)遞減,即,從而,因?yàn)椋詫?shí)數(shù)a的取值范圍是故選:D.【點(diǎn)睛】此題考查含參函數(shù)研究單調(diào)性問(wèn)題,根據(jù)參數(shù)范圍化簡(jiǎn)后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問(wèn)題,屬于一般性題目.10A【解析】由函

11、數(shù)性質(zhì),結(jié)合特殊值驗(yàn)證,通過(guò)排除法求得結(jié)果.【詳解】對(duì)于選項(xiàng)B, 為 奇函數(shù)可判斷B錯(cuò)誤;對(duì)于選項(xiàng)C,當(dāng)時(shí), ,可判斷C錯(cuò)誤;對(duì)于選項(xiàng)D, ,可知函數(shù)在第一象限的圖象無(wú)增區(qū)間,故D錯(cuò)誤;故選:A.【點(diǎn)睛】本題考查已知函數(shù)的圖象判斷解析式問(wèn)題,通過(guò)函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.11B【解析】建立平面直角坐標(biāo)系,用坐標(biāo)表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,則D(0,0).不妨設(shè)AB1,則CDAD2,所以C(2,0),A(0,2),B(1,2),E(0,1), (2,2)(2,1)(1,2),解得則.故選:B【點(diǎn)睛】本題主要考查了由平面向量線性

12、運(yùn)算的結(jié)果求參數(shù),屬于中檔題.12B【解析】由正弦定理及條件可得,即.,由余弦定理得。.選B。二、填空題:本題共4小題,每小題5分,共20分。13【解析】寫(xiě)出所在直線方程,求出圓心到直線的距離,結(jié)合題意可得關(guān)于的等式,求解得答案【詳解】解:直線的方程為,即圓的圓心到直線的距離,由的面積是的面積的2倍的點(diǎn),有且僅有一對(duì),可得點(diǎn)到的距離是點(diǎn)到直線的距離的2倍,可得過(guò)圓的圓心,如圖:由,解得故答案為:【點(diǎn)睛】本題考查直線和圓的位置關(guān)系以及點(diǎn)到直線的距離公式應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,屬于中檔題14【解析】先求出集合,然后根據(jù)交集、補(bǔ)集的定義求解即可【詳解】解:,或;故答案為:【點(diǎn)睛】本題主要考

13、查集合的交集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題15【解析】先根據(jù)橢圓得出焦距,結(jié)合橢圓的定義求出,結(jié)合雙曲線的定義求出雙曲線的實(shí)半軸,最后利用離心率的公式求出離心率即可.【詳解】解: 因?yàn)闄E圓,則焦點(diǎn)為,又因?yàn)闄E圓與雙曲線(,)有相同的焦點(diǎn),橢圓與雙曲線在第一象限內(nèi)的交點(diǎn)為,且,在橢圓中: 由橢圓的定義: 在雙曲線中: ,所以雙曲線的實(shí)軸長(zhǎng)為: ,實(shí)半軸為則雙曲線的離心率為: .故答案為: 【點(diǎn)睛】本題主要考查橢圓與雙曲線的定義,考查離心率的求解,利用定義解決綜合問(wèn)題.16【解析】利用三角函數(shù)的輔助角公式進(jìn)行化簡(jiǎn),求出函數(shù)的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可【詳解】,則函數(shù)的最大值為2,周期,的最大

14、值與最小正周期相同,得,則,當(dāng)時(shí),則當(dāng)時(shí),得,即函數(shù)在,上的單調(diào)遞增區(qū)間為,故答案為:.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)、單調(diào)區(qū)間,利用輔助角公式求出函數(shù)的解析式是解決本題的關(guān)鍵,同時(shí)要注意單調(diào)區(qū)間為定義域的一個(gè)子區(qū)間三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17()()【解析】()求函數(shù)的導(dǎo)函數(shù),即可求得切線的斜率,則切線方程得解;()構(gòu)造函數(shù),對(duì)參數(shù)分類(lèi)討論,求得函數(shù)的單調(diào)性,以及最值,即可容易求得參數(shù)范圍.【詳解】()當(dāng)時(shí),則.所以.又,故所求切線方程為,即.()依題意,得,即恒成立.令,則.當(dāng)時(shí),因?yàn)?,不合題意.當(dāng)時(shí),令,得,顯然.令,得或;令,得.所以函數(shù)的單調(diào)遞增

15、區(qū)間是,單調(diào)遞減區(qū)間是.當(dāng)時(shí),所以,只需,所以,所以實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求切線方程,以及利用導(dǎo)數(shù)研究恒成立問(wèn)題,屬綜合中檔題.18(1);(2)證明見(jiàn)解析【解析】(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此解不等式求得不等式的解集.(2)將不等式坐標(biāo)因式分解,結(jié)合(1)的結(jié)論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因?yàn)?,所以,所以,所?【點(diǎn)睛】本小題主要考查絕對(duì)值不等式的解法,考查不等式的證明,屬于基礎(chǔ)題.19(1)x24+【解析】試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決

16、問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力第一問(wèn),先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問(wèn),討論直線MN的斜率是否存在,當(dāng)直線MN的斜率存在時(shí),直線方程與橢圓方程聯(lián)立,消參,利用韋達(dá)定理,得到x1+x2、x1x試題解析:(1)e=22,又S=122a2b=4橢圓C的標(biāo)準(zhǔn)方程為x2(2)由題意知,當(dāng)直線MN斜率存在時(shí),設(shè)直線方程為y=k(x-1),M(x聯(lián)立方程x24+因?yàn)橹本€與橢圓交于兩點(diǎn),所以=16kx又OM因?yàn)辄c(diǎn)P在橢圓x24+即2k又|OM即|NM|4化簡(jiǎn)得:13k4-5k2t2=1-當(dāng)直線MN的斜率不存在時(shí),M(1,62t-1,考點(diǎn):橢圓

17、的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系20(1):,:;(2)【解析】(1)根據(jù)點(diǎn)斜式寫(xiě)出直線的直角坐標(biāo)方程,并轉(zhuǎn)化為極坐標(biāo)方程,利用,將曲線的參數(shù)方程轉(zhuǎn)化為普通方程.(2)將直線的參數(shù)方程代入曲線的普通方程,結(jié)合直線參數(shù)的幾何意義以及根與系數(shù)關(guān)系,求得的值.【詳解】(1)的直角坐標(biāo)方程為,即,則的極坐標(biāo)方程為.曲線的普通方程為.(2)直線的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線的普通方程,得. 設(shè),對(duì)應(yīng)的參數(shù)分別為,所以,在的兩側(cè).則.【點(diǎn)睛】本小題主要考查直角坐標(biāo)化為極坐標(biāo),考查參數(shù)方程化為普通方程,考查直線參數(shù)方程,考查直線參數(shù)的幾何意義,屬于中檔題.21(1);(2)10【解

18、析】(1)消去參數(shù),可得曲線C的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,代入即可求得曲線C的極坐標(biāo)方程;(2)將代入曲線C的極坐標(biāo)方程,利用根與系數(shù)的關(guān)系,求得,進(jìn)而得到=,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,曲線C的參數(shù)方程為,消去參數(shù),可得曲線C的普通方程為,即,又由,代入可得曲線C的極坐標(biāo)方程為.(2)將代入,得,即,所以=,其中,當(dāng)時(shí),取最大值,最大值為10.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及曲線的極坐標(biāo)方程的應(yīng)用,著重考查了運(yùn)算與求解能力,屬于中檔試題.22(1)m(t)(2)a22.(3)a22.【解析】(1)是研究在動(dòng)區(qū)間上的最值問(wèn)題,這類(lèi)問(wèn)題的研究方法就是通過(guò)討論函數(shù)的極值點(diǎn)與所研究的區(qū)間的大小關(guān)系來(lái)進(jìn)行求解(2)注意到函數(shù)h(x)的圖像上任意不同兩點(diǎn)A,B連線的斜率總大于1,等價(jià)于h(x1)h(x2)x1x2(x1x2)恒成立,從而構(gòu)造函數(shù)F(x)h(x)x在(0,)上單調(diào)遞增,進(jìn)而等價(jià)于F(x)0在(0,)上恒成立來(lái)加以研究(3)用處理恒成立問(wèn)題來(lái)處理有解問(wèn)題,先分離變量轉(zhuǎn)化為求對(duì)應(yīng)函數(shù)的最

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論