下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022學年湖南省婁底市某學校數(shù)學高職單招測試試題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(10題)1.若x2-ax+b<0的解集為(1,2),則a+b=()A.5B.-5C.1D.-1
2.某商場以每件30元的價格購進一種商品,試銷中發(fā)現(xiàn),這種商品每天的銷量m(件)與x售價(元)滿足一次函數(shù):m=162-3x,若要每天獲得最大的銷售利潤,每件商品的售價應(yīng)定為()A.30元B.42元C.54元D.越高越好
3.同時擲兩枚質(zhì)地均勻的硬幣,則至少有一枚出現(xiàn)正面的概率是()A.lB.3/4C.1/2D.1/4
4.已知定義在R上的函數(shù)f(x)圖象關(guān)于直線x=l對稱,若X≥1時,f(x)=x(1-x),則f(0)=()A.OB.-2C.-6D.-12
5.若實數(shù)a,b滿足a+b=2,則3a+3b的最小值是()A.18
B.6
C.
D.
6.直線2x-y+7=0與圓(x-b2)+(y-b2)=20的位置關(guān)系是()A.相離B.相交但不過圓心C.相交且過圓心D.相切
7.當時,函數(shù)的()A.最大值1,最小值-1
B.最大值1,最小值
C.最大值2,最小值-2
D.最大值2,最小值-1
8.下列函數(shù)是奇函數(shù)的是A.y=x+3
B.C.D.
9.(1-x)4的展開式中,x2的系數(shù)是()A.6B.-6C.4D.-4
10.已知等差數(shù)列的前n項和是,若,則等于()A.
B.
C.
D.
二、填空題(10題)11.
12.若l與直線2x-3y+12=0的夾角45°,則l的斜線率為_____.
13.
14.等比數(shù)列中,a2=3,a6=6,則a4=_____.
15.已知一個正四棱柱的底面積為16,高為3,則該正四棱柱外接球的表面積為_____.
16.甲,乙兩人向一目標射擊一次,若甲擊中的概率是0.6,乙的概率是0.9,則兩人都擊中的概率是_____.
17.雙曲線x2/4-y2/3=1的虛軸長為______.
18.若展開式中各項系數(shù)的和為128,則展開式中x2項的系數(shù)為_____.
19.函數(shù)的定義域是_____.
20.
三、計算題(5題)21.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
22.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
23.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
24.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
25.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.
四、證明題(5題)26.己知
a
=(-1,2),b
=(-2,1),證明:cos〈a,b〉=4/5.
27.己知sin(θ+α)=sin(θ+β),求證:
28.△ABC的三邊分別為a,b,c,為且,求證∠C=
29.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
30.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標準方程為(x-1)2
+(y+1)2
=8.
五、簡答題(5題)31.據(jù)調(diào)查,某類產(chǎn)品一個月被投訴的次數(shù)為0,1,2的概率分別是0.4,0.5,0.1,求該產(chǎn)品一個月內(nèi)被投訴不超過1次的概率
32.化簡
33.點A是BCD所在平面外的一點,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
34.已知等差數(shù)列{an},a2=9,a5=21(1)求{an}的通項公式;(2)令bn=2n求數(shù)列{bn}的前n項和Sn.
35.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實數(shù)x。
六、綜合題(5題)36.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.
37.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
39.
40.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.
參考答案
1.A一元二次不等式與一元二次方程的應(yīng)用,根與系數(shù)的關(guān)系的應(yīng)用問題.即方程x2-ax+b=0的兩根為1,2.由根與系數(shù)關(guān)系得解得a=3.所以a+b=5.
2.B函數(shù)的實際應(yīng)用.設(shè)日銷售利潤為y元,則y=(x-30)(162-3x),30≤x≤54,將上式配方得y=-3(x-42)2+432,所以x=42時,利潤最大.
3.B獨立事件的概率.同時擲兩枚質(zhì)地均勻的硬幣,可能的結(jié)果:(正,正),(正,反),(反,正),(反,反)共4種結(jié)果,至少有一枚出現(xiàn)正面的結(jié)果有3種,所求的概率是3/4
4.B函數(shù)圖像的對稱性.由對稱性可得f(0)=f(2)=2(1-2)=-2
5.B不等式求最值.3a+3b≥2
6.D由題可知,直線2x-y+7=0到圓(x-b)2+(y-b)2=20的距離等于半徑,所以二者相切。
7.D,因為,所以,,,所以最大值為2,最小值為-1。
8.C
9.A
10.D設(shè)t=2n-1,則St=t(t+1+1)=t(t+2),故Sn=n(n+2)。
11.x+y+2=0
12.5或,
13.
14.
,由等比數(shù)列性質(zhì)可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.
15.41π,由題可知,底面邊長為4,底面對角線為,外接球的直徑即由高和底面對角線組成的矩形的對角線,所以外接球的直徑為,外接球的表面積為。
16.0.54,由于甲擊中的事件和乙擊中的事件互相獨立,因此可得甲乙同時擊中的概率為P=0.6*0.9=0.54.
17.2雙曲線的定義.b2=3,.所以b=.所以2b=2.
18.-189,
19.{x|1<x<5且x≠2},
20.2π/3
21.
22.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
23.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當x=0時,y=-4∴直線l在y軸上的截距為-4
24.
25.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
26.
27.
28.
29.證明:考慮對數(shù)函數(shù)y=lgx的限制知
:當x∈(1,10)時,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B
30.
31.設(shè)事件A表示“一個月內(nèi)被投訴的次數(shù)為0”,事件B表示“一個月內(nèi)被投訴的次數(shù)為1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
32.sinα
33.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點O,以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,
34.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴數(shù)列為首項b1=32,q=16的等比數(shù)列
35.
∵μ//v∴(2x+1.4)=(2-x,3)得
36.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過點(0,-8/3),所以m=8,直線l的方程為5x-3y-8=0。(2)設(shè)圓心為C(a,b),圓與兩坐標軸相切,故a=±b又圓心在直線5x-3y-8=0上,將a=b或a=-b代入直線方程得:a=4或a=1當a=4時,b
=4,此時r=4,圓的方程為(x-4)2
+(y-4)2=16當a=1時,b
=-1,此時r=1,圓的方程為(x-1)2
+(y+1)2=1
37.
3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)力作用知識點課件
- 影樓元旦活動方案策劃(3篇)
- 牛奶刨冰活動方案策劃(3篇)
- 甲方廠區(qū)物業(yè)管理制度(3篇)
- 質(zhì)量管理制度與執(zhí)行(3篇)
- 鉗工班組工具管理制度(3篇)
- 《GA 1052.5-2013警用帳篷 第5部分:60m2單帳篷》專題研究報告深度
- 《GA 674-2007警用服飾 絲織胸徽》專題研究報告
- 2026年及未來5年市場數(shù)據(jù)中國消費品檢測行業(yè)市場深度分析及發(fā)展趨勢預(yù)測報告
- 2026年及未來5年市場數(shù)據(jù)中國智慧商城建設(shè)行業(yè)市場競爭格局及發(fā)展趨勢預(yù)測報告
- 郵政服務(wù)操作流程與規(guī)范(標準版)
- 2026昆山鈔票紙業(yè)有限公司校園招聘15人備考題庫及1套完整答案詳解
- 2026年重慶市江津區(qū)社區(qū)專職人員招聘(642人)考試參考題庫及答案解析
- 2026年1月福建廈門市集美區(qū)后溪鎮(zhèn)衛(wèi)生院補充編外人員招聘16人筆試模擬試題及答案解析
- 2026年長治職業(yè)技術(shù)學院單招職業(yè)技能考試題庫附答案解析
- 新華資產(chǎn)招聘筆試題庫2026
- 變配電室送電施工方案
- 地質(zhì)勘查現(xiàn)場安全風險管控清單
- 松下panasonic-經(jīng)銷商傳感器培訓(xùn)
- 建設(shè)工程項目施工風險管理課件
- 口腔門診行政人事制度
評論
0/150
提交評論